Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year


IMPACT FACTOR 2017: 0.314
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339
Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 68, Issue 5

Issues

Wigner's theorem for an infinite set

John Harding
Published Online: 2018-10-20 | DOI: https://doi.org/10.1515/ms-2017-0178

Abstract

It is well known that the closed subspaces of a Hilbert space form an orthomodular lattice. Elements of this orthomodular lattice are the propositions of a quantum mechanical system represented by the Hilbert space, and by Gleason’s theorem atoms of this orthomodular lattice correspond to pure states of the system. Wigner’s theorem says that the automorphism group of this orthomodular lattice corresponds to the group of unitary and anti-unitary operators of the Hilbert space. This result is of basic importance in the use of group representations in quantum mechanics.

The closed subspaces A of a Hilbert space H correspond to direct product decompositions HA×A of the Hilbert space, a result that lies at the heart of the superposition principle. In [10] it was shown that the direct product decompositions of any set, group, vector space, and topological space form an orthomodular poset. This is the basis for a line of study in foundational quantum mechanics replacing Hilbert spaces with other types of structures. It is the purpose of this note to prove a version of Wigner’s theorem: for an infinite set X, the automorphism group of the orthomodular poset Fact(X) of direct product decompositions of X is isomorphic to the permutation group of X.

The structure Fact(X) plays the role for direct product decompositions of a set that the lattice of equivalence relations plays for surjective images of a set. So determining its automorphism group is of interest independent of its application to quantum mechanics. Other properties of Fact(X) are determined in proving our version of Wigner’s theorem, namely that Fact(X) is atomistic in a very strong way.

MSC 2010: Primary 81P10; Secondary 06C15; 20C35; 51A05; 81R99

Keywords: Wigner’s theorem; orthomodular poset; automorphism; group representation; direct product decomposition

REFERENCES

  • [1]

    BIRKHOFF, G.—VON NEUMANN, J.: The logic of quantum mechanics, Ann. of Math. (2) 37 (4) (1936), 823–843.Google Scholar

  • [2]

    BURRIS, S.—SANKAPPANAVAR, H. P.: A Course in Universal Algebra. Graduate Texts in Math. 78, Springer, 1981.Google Scholar

  • [3]

    GREECHIE, R. J.: A particular non-atomistic orthomodular poset, Comm. Math. Phys. 14 (1969), 326–328.Google Scholar

  • [4]

    CHEVALIER, G.: Automorphisms of an orthomodular poset of projections, Internat. J. Theoret. Phys. 44 (7) (2005), 985–998.Google Scholar

  • [5]

    CHEVALIER, G.: The orthomodular poset of projections of a symmetric lattice, Internat. J. Theoret. Phys. 44 (11) (2005), 2073–2089.Google Scholar

  • [6]

    CHEVALIER, G.: Wigner’s theorem and its generalizations. In: The Handbook of Quantum Logic and Quantum Structures, Engesser, Gabbay, and Lehmann (eds.), Elsevier, 2007, pp. 429–475.Google Scholar

  • [7]

    CHEVALIER, G.: Wigner type theorems for projections, Internat. J. Theoret. Phys. 47 (1) (2008), 69–80.Google Scholar

  • [8]

    DIXON, J.—MORTIMER, B.: Permutation Groups. Graduate Texts in Math. 163, Springer, 1996.Google Scholar

  • [9]

    HANNAN, T.—HARDING, J.: Automorphisms of decompositions, Math. Slovaca, to appear.Google Scholar

  • [10]

    HARDING, J.: Decompositions in quantum logic, Trans. Amer. Math. Soc. 348 (5) (1996), 1839–1862.Google Scholar

  • [11]

    HARDING, J.: Regularity in quantum logic, Internat. J. Theoret. Phys. 37 (4) (1998), 1173–1212.Google Scholar

  • [12]

    HARDING, J.: Axioms of an experimental system, Internat. J. Theoret. Phys. 38 (6) (1999), 1643–1675.Google Scholar

  • [13]

    HARDING, J.: A link between quantum logic and categorical quantum mechanics, Internat. J. Theoret. Phys. 48 (3) (2009), 769–802.Google Scholar

  • [14]

    HARDING, J.: Orthomodularity of decompositions in a categorical setting, Internat. J. Theoret. Phys. 45 (6) (2006), 1117–1127.Google Scholar

  • [15]

    HARDING, J.: Dynamics in the decompositions approach to quantum mechanics, Internat. J. Theoret. Phys., to appear.Google Scholar

  • [16]

    HARDING, J.—YANG, T.: Sections in orthomodular structures of decompositions, Houston J. Math., to appear.Google Scholar

  • [17]

    HARDING, J.—YANG, T.: The logic of bundles, Internat. J. Theoret. Phys., to appear.Google Scholar

  • [18]

    KALMBACH, G.: Orthomodular Lattices. London Math. Soc. Monogr. 18, Academic Press, Inc. London, 1983.Google Scholar

  • [19]

    MACKEY, G. W.: The Mathematical Foundations of Quantum Mechanics, A Lecture-Note Volume by W. A. Benjamin, Inc., New York-Amsterdam, 1963.Google Scholar

  • [20]

    McKENZIE, R.—McNULTY, G.—TAYLOR, W.: Algebras, Lattices, Varieties, vol. 1, Wadsworth & Brooks/Cole, 1987.Google Scholar

  • [21]

    MUSHTARI, D. K.: Projection logics in Banach spaces, Soviet Math. (Iz. VUZ) 33 (1989), 59–70.Google Scholar

  • [22]

    OVCHINNIKOV, P.: Automorphisms of the poset of skew projections, J. Funct. Anal. 115 (1993), 184–189.Google Scholar

  • [23]

    PTA´ K, P.—PULMANNOVA´ , S.: Orthomodular Structures as Quantum Logics. Fundam. Theor. Phys. 44, Kluwer Academic Publishers Group, Dordrecht, 1991.Google Scholar

  • [24]

    SINGER, S. F.: Linearity, Symmetry, and Prediction in the Hydrogen Atom, Springer, 2005.Google Scholar

  • [25]

    UHLHORN, U.: Representation of symmetry transformations in quantum mechanics, Ark. Fys. 23 (1963), 307–340.Google Scholar

  • [26]

    VARADARAJAN, V. S.: Geometry of Quantum Theory, second ed., Springer-Verlag, 1985.Google Scholar

  • [27]

    WIGNER, E. P.: Group Theory and its Applications to the Quantum Mechanics of the Atomic Spectra, Academic Press, 1959.Google Scholar

About the article

Received: 2016-07-24

Accepted: 2017-08-31

Published Online: 2018-10-20

Published in Print: 2018-10-25


Citation Information: Mathematica Slovaca, Volume 68, Issue 5, Pages 1173–1222, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0178.

Export Citation

© 2018 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in