[1]

ALI, S.—HUANG, S.: *On derivations in semiprime rings*, Algebr. Represent. Theo. **15** (2012), 1023–1033.Google Scholar

[2]

BEIDAR, K. I.—MARTINDALE III, W. S.—MIKHALEV, A. V.: *Rings with Generalized Identities*. Pure Appl. Math. 196, Marcel Dekker, New York, 1996.Google Scholar

[3]

BREŠAR, M.: *Centralizing mappings and derivations in prime ring*, J. Algebra **156** (1993), 385–394.Google Scholar

[4]

BREŠAR, M.: *Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings*, Trans. Amer Math. Soc. **335**(2) (1993), 525–546.Google Scholar

[5]

BREŠAR, M.: *On a generalization of the notion of centralizing mappings*, Proc. Amer. Math. Soc. **114** (1992), 641–649.Google Scholar

[6]

CARINI, L.—DE FILIPPIS, V.: *Commutators with power central values on Lie ideals*, Pacific J. Math. **193** (2000), 269–278.Google Scholar

[7]

CHUANG, C. L.: *GPIs having coefficients in Utumi quotient rings*, Proc. Amer. Math. Soc. **103** (1988), 723–728.Google Scholar

[8]

CHUANG, C. L.: *Differential identities with automorphism and anti-automorphism-II*, J. Algebra **160** (1993), 291–335.Google Scholar

[9]

CHENG, H.: *Some results about derivations of prime rings*, J. Math. Reser. Expos. **25**(4) (2005), 625–633.Google Scholar

[10]

HERSTEIN, I. N.: *Derivations of prime rings having poer central values*, Contemp. Math. **13** (1982), 163–171.Google Scholar

[11]

HUANG, S.: *Derivations with Engel conditions in prime and semiprime rings*, Czechoslovak Math. J. **61**(136) (2013), 1135–1140.Google Scholar

[12]

JACOBSON, N.: *PI-algebras, An Introduction*. Lecture Notes in Math. 441, Berlin Heidelberg, New york: Springer Verlag, 1975.Google Scholar

[13]

LANSKI, C.: *Differential identities, Lie ideals and Posner’s theorems*, Pacific J. Math. **134** (1988), 275–297.Google Scholar

[14]

LANSKI, C.: *An Engel condition with derivations*, Proc. Amer. Math. Soc. **118** (1993), 731–734.Google Scholar

[15]

LEE, P. H.—LEE, T. K.: *Lie ideals of prime rings with derivations*, Bull. Inst. Math. Acad. Sin. **11** (1983), 75–80.Google Scholar

[16]

MARTINDALE III, W. S.: *Prime rings satisfying a generalized polynomial identity*, J. Algebra **12** (1969), 576–584.Google Scholar

[17]

MAYNE, J. H.: *Centralizing automorphisms of prime rings*, Canad. Math. Bull. **19** (1976), 113–115.Google Scholar

[18]

MAYNE, J. H.: *Centralizing automorphisms of Lie ideals in prime rings*, Canad. Math. Bull. **35** (1992), 510–514.Google Scholar

[19]

POSNER, E. C.: *Derivations in prime rings*, Proc. Amer. Math. Soc. **8** (1957), 1093–1100.Google Scholar

[20]

RAZA, M. A.—REHMAN, N.: *An identity on automorphisms of Lie ideals in prime rings*, Ann. Univ. Ferrara **62**(1) (2016), 143–150.Google Scholar

[21]

REHMAN, N.—RAZA, M. A.: *On **m*-commuting mappings with skew derivations in prime rings, St. Petersburg Math. J. **27**(4) (2016), 641–650.Google Scholar

[22]

VUKMAN, V.: *Commuting and centralizing mappings in prime rings*, Proc. Amer. Math. Soc. **109**(1) (1990), 47–52.Google Scholar

[23]

VUKMAN, V.: *Identities with derivations and automorphis on semiprime rings*, Int. J. Math. Math. Sci. **2005**(7) (2005), 1031–1038.Google Scholar

[24]

WANG, Y.: *Power-centralizing automorphisma of Lie ideals in prime rings*, Comm. Algebra 34 (2006),609–615.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.