[1]

Ahmad, B.—Ntouyas, S. K.: *Initial value problems for hybrid Hadamard fractional differential equations*, Electron. J. Differential Equations **161** (2014), 1–8.Google Scholar

[2]

Ahmad, B.—Ntouyas, S. K.: *An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions*, Abstr. Appl. Anal. **2014** (2014), Article ID 705809, 7 pp.Web of ScienceGoogle Scholar

[3]

Ahmad, B.—Ntouyas, S. K.: *On three-point Hadamard-type fractional boundary value problems*, Int. Electron. J. Pure Appl. Math. **8** (2014), 31–42.Google Scholar

[4]

Ahmad, B.—Ntouyas, S. K.: *An existence theorem for fractional hybrid differential inclusions of Hadamard type*, Discuss. Math. Differ. Incl. Control Optim. **34** (2014), 207–218.CrossrefGoogle Scholar

[5]

Ahmad, B.—Ntouyas, S. K.: *Initial value problems of fractional order Hadamard-type functional differential equations*, Electron. J. Differential Equations **77** (2015), 1–9.Google Scholar

[6]

Ahmad, B.—Ntouyas, S. K.: *Nonlocal boundary value problems for hybrid fractional differential equations and inclusions of Hadamard type*, Fractional Differ. Calc. **5** (2015), 107–123.Google Scholar

[7]

Ahmad, B.—Ntouyas, S. K.: *Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments*, Adv. Difference Equ. **2016**(80) (2016).Web of ScienceGoogle Scholar

[8]

Ahmad, B.—Ntouyas, S. K.: *Initial value problems for functional and neutral functional Hadamard type fractional differential inclusions*, Miskolc Math. Notes **17** (2016), 15–27.Web of ScienceCrossrefGoogle Scholar

[9]

Ahmad, B.—Ntouyas, S. K.: *A fully Hadamard-type integral boundary value problem of a coupled system of fractional differential equations*, Fract. Calc. Appl. Anal. **17** (2014), 348–360.Web of ScienceGoogle Scholar

[10]

Ahmad, B.—Ntouyas, S. K.: *Boundary value problems of Hadamard-type fractional differential equations and inclusions with nonlocal conditions*, Vietnam J. Math. **45**(3) (2017), 409–423.CrossrefWeb of ScienceGoogle Scholar

[11]

Ahmad, B.—Ntouyas, S. K.—Alsaedi, A.: *New results for boundary value problems of Hadamard-type fractional differential inclusions and integral boundary conditions*, Bound. Value Probl. **2013**:275 (2013).Web of ScienceGoogle Scholar

[12]

Ahmad, B.— Ntouyas, S. K.—Tariboon, J.: *Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential equations*, Adv. Difference Equ. **2015**:293 (2015).Web of ScienceGoogle Scholar

[13]

Ahmad, B.— Ntouyas, S. K.—Tariboon, J.: *Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions*, J. Nonlinear Sci. Appl. **9** (2016), 6333–6347.CrossrefGoogle Scholar

[14]

Ahmad, B.—Alsaedi, A.—Ntouyas, S. K.—Tariboon, J.: *Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities*, Springer, 2017.Google Scholar

[15]

Alsaedi, A.—Ntouyas, S. K.—Ahmad, B.—Hobiny, A.: *Nonlinear Hadamard fractional differential equations with Hadamard type nonlocal non-conserved conditions*, Adv. Difference Equ. **2015**:285 (2015).Web of ScienceGoogle Scholar

[16]

Benchohra, M.—Lazreg, J. E.: *Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative*, Stud. Univ. Babes-Bolyai Math. **62**(1) (2017), 27–38.CrossrefWeb of ScienceGoogle Scholar

[17]

Benchohra, M.—Bouriah, S.—Lazreg, J. E.—Nieto, J. J.: *Nonlinear implicit Hadamard’s fractional differential equations with delay in Banach space*, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. **55**(1) (2016), 15–26.Google Scholar

[18]

Carpinteri, A.—Mainardi, F.: *Fractals and Fractional Calculus in Continuum Mechanics*, Springer, Berlin, 1997.Google Scholar

[19]

Guerraiche, N.—Hamani, S.—Henderson, J.: *Initial value problems for fractional functional differential inclusions with Hadamard type derivative*, Arch. Math. (Brno) **52** (2016), 263–273.Web of ScienceGoogle Scholar

[20]

Hadamard, J.: *Essai sur l’etude des fonctions donnees par leur developpment de Taylor*, J. Pure Appl. Math. **4**(8) (1892), 101–186.Google Scholar

[21]

Hilfer, R.: *Applications of Fractional Calculus in Physics*, World Sci. Publishing, River Edge, NJ, 2000.Google Scholar

[22]

Idczak, D.—Kamocki, R.: *On the existence and uniqueness and formula for the solution of R-L fractional Cauchy problem in ℝ*^{n}, Fract. Calc. Appl. Anal. **14**(4) (2011), 538–553.Web of ScienceGoogle Scholar

[23]

Kassim, M. D.—Furati, K. M.—Tatar, N.-E.: *On a differential equation involving Hilfer-Hadamard fractional derivative*, Abstr. Appl. Anal. **2012** (2012), 17 pp.Web of ScienceGoogle Scholar

[24]

Kassim, M. D.—Tatar, N.-E.: *Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative*, Abstr. Appl. Anal. **2014** (2014), 1–7.Web of ScienceGoogle Scholar

[25]

Kilbas, A. A.: *Hadamard-type fractional calculus*, J. Korean Math. Soc. **38**(6) (2001), 1191–1204.Google Scholar

[26]

Kilbas, A. A.: *Hadamard-type integral equations and fractional calculus operators*, Oper. Theory Adv. Appl. **142** (2003), 175–188.Google Scholar

[27]

Kilbas, A. A.—Srivastava, H. M.—Trujillo, J. J.: *Theory and Applications of Fractional Differential Equations*, Elsevier, Amsterdam, 2006.Google Scholar

[28]

Malinowska, A. B.—Torres, D. F. M.: *Introduction to the Fractional Calculus of Variations*, Imperial College Press, London, 2012.Google Scholar

[29]

Samko, S. G.—Kilbas, A. A.—Marichev, O. I.: *Fractional Integrals and Derivatives – Theory and Applications*, Gordon and Breach, Amsterdam, 1993.Google Scholar

[30]

West, BJ.—Grigolini, P.: *Applications of Fractional Calculus in Physics*, World Scientific, Singapore, 1998.Google Scholar

[31]

Zhang, X.—Zhang, X.—Liu, Z.—Ding, W.—Cao, H.—Shu, T.: *On the general solution of impulsive systems with Hadamard fractional derivatives*, Math. Probl. Eng. **2016** (2016), Article ID 2814310, 12 pp.Web of ScienceGoogle Scholar

[32]

Zhang, X.—Shu, T.—Cao, H.—Liu, Z.—Ding, W.: *The general solution for impulsive differential equations with Hadamard fractional derivative of order q ∈ (1,2)*, Adv. Difference Equ. **2016**:14 (2016), 36 pp.Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.