[1]

Chen, X.—Chu, W.: *Further* $\begin{array}{}{\displaystyle {}_{3}{F}_{2}(\frac{4}{3})}\end{array}$ *series via Gould*–*Hsu inversions*, Integral Transforms Spec. Funct. **24**(6) (2013), 441–469.CrossrefGoogle Scholar

[2]

Chu, W.: *A binomial coefficient identity associated with Beukers’ conjecture on Apéry numbers*, Electron. J. Combin. **11**(1) (2004), #N15, 3 pp.Google Scholar

[3]

Chu, W.: *Harmonic number identities and Hermite*-*Padé approximations to the logarithm function*, J. Approx. Theory **137**(1) (2005), 42–56.CrossrefGoogle Scholar

[4]

Chu, W.: *Partial fraction decompositions and trigonometric sum identities*, Proc. Amer. Math. Soc. **136**(1) (2008), 229–237.Web of ScienceCrossrefGoogle Scholar

[5]

Gould, H. W.: *The bracket function and Fountené*–*Ward generalized binomial coefficients with application to Fibonomial coefficients*, Fibonacci Quart. **7** (1969), 23–40.Google Scholar

[6]

Hoggatt Jr., V. E.: *Fibonacci numbers and generalized binomial coefficients*, Fibonacci Quart. **5** (1967), 383–400.Google Scholar

[7]

Horadam, A. F.: *Generating functions for powers of a certain generalized sequence of numbers*, Duke Math. J. **32** (1965), 437–446.CrossrefGoogle Scholar

[8]

Kiliç, E.: *The generalized Fibonomial matrix*, European J. Combin. **29**(3) (2008), 701–711.Web of ScienceGoogle Scholar

[9]

Kiliç, E.: *Evaluation of sums containing triple aerated generalized Fibonomial coefficients*, Math. Slovaca **67**(2) (2017), 355–370.Web of ScienceGoogle Scholar

[10]

Kiliç, E.—Ohtsuka, H.—Akkuş, I: *Some generalized Fibonomial sums related with the Gaussian* *q*-*binomial sums*, Bull. Math. Soc. Sci. Math. Roumanie **55**(1) (103) (2012), 51–61.Google Scholar

[11]

Kiliç, E.—Prodinger, H.: *Evaluation of sums involving products of Gaussian* *q*-*binomial coefficients with applications to Fibonomial sums*, Turkish J. Math. **41**(3) (2017), 707–716.CrossrefWeb of ScienceGoogle Scholar

[12]

Kiliç, E.—Prodinger, H.—Akkus, I.—Ohtsuka, H.: *Formulas for Fibonomial sums with generalized Fibonacci and Lucas coefficients*, Fibonacci Quart. **49**(4) (2011), 320–329.Google Scholar

[13]

Kiliç, E.—Prodinger, H.: *Evaluation of sums involving Gaussian* *q*-*binomial coefficients with rational weight functions*, Int. J. Number Theory **12**(2) (2016), 495–504.Web of ScienceCrossrefGoogle Scholar

[14]

Kiliç, E.—Prodinger, H.: *Closed form evaluation of sums containing squares of Fibonomial coefficients*, Math. Slovaca **66**(3) (2016), 757–767.Web of ScienceGoogle Scholar

[15]

Li, N. N.—Chu, W.: *q*-*Derivative operator proof for a conjecture of Melham*, Discrete Appl. Math. **177** (2014), 158–164.CrossrefWeb of ScienceGoogle Scholar

[16]

Marques, D.—Trojovsky, P.: *On some new sums of Fibonomial coefficients*, Fibonacci Quart. **50**(2) (2012), 155–162.Google Scholar

[17]

Seibert, J.—Trojovsky, P.: *On some identities for the Fibonomial coefficients*, Math. Slovaca **55** (2005), 9–19.Web of ScienceGoogle Scholar

[18]

Trojovsky, P.: *On some identities for the Fibonomial coefficients via generating function*, Discrete Appl. Math. **155**(15) (2007), 2017–2024.CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.