Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia


IMPACT FACTOR 2018: 0.490

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.279
Source Normalized Impact per Paper (SNIP) 2018: 0.627

Mathematical Citation Quotient (MCQ) 2018: 0.29

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 69, Issue 2

Issues

Integrals of logarithmic functions and alternating multiple zeta values

Ce Xu
Published Online: 2019-03-18 | DOI: https://doi.org/10.1515/ms-2017-0227

Abstract

By using the method of iterated integral representations of series, we establish some explicit relationships between multiple zeta values and integrals of logarithmic functions. As applications of these relations, we show that multiple zeta values of the form ζ(1¯,1m1,1¯,1k1),(k,mN)

for m = 1 or k = 1, and ζ(1¯,1m1,p,1k1),(k,mN)

for p = 1 and 2, satisfy certain recurrence relations which allow us to write them in terms of zeta values, polylogarithms and ln 2. Furthermore, we also obtain reductions for certain multiple polylogarithmic values at 12.

MSC 2010: Primary 11A07; Secondary 11M32; 33B15

Keywords: multiple zeta values; multiple polylogarithms; harmonic numbers; Euler sums

References

  • [1]

    Alzer, H.—Karayannakis, D.—Srivastava, H. M.: Series representations for some mathematical constants, J. Math. Anal. Appl. 320 (2006), 145–162.CrossrefGoogle Scholar

  • [2]

    Andrews, G. E.—Askey, R.—Roy, R.: Special Functions, Cambridge University Press, 2000, 481–532.Google Scholar

  • [3]

    Bailey, D. H.—Borwein, J. M.—Girgensohn, R.: Experimental evaluation of Euler sums, Exp. Math. 3 (1994), 17–30.CrossrefGoogle Scholar

  • [4]

    Bailey, D. H.—Borwein, J. M.—Crandall, R. E.: Computation and theory of extended Mordell-Tornheim-Witten sums, Math. Comp. 83 (2014), 1795–1821.CrossrefGoogle Scholar

  • [5]

    Berndt, B. C.: Ramanujan’s Notebooks, Part I, Springer-Verlag, New York, 1985.Google Scholar

  • [6]

    Berndt, B. C.: Ramanujan’s Notebooks, Part II, Springer-Verlag, New York, 1989.Google Scholar

  • [7]

    Blumlein, J.—Kurth, S.: Harmonic sums and Mellin transforms up to two loop order, Phys. Rev. D. 60 (1999), 14–18.Google Scholar

  • [8]

    Borwein, D.—Borwein, J. M.—Girgensohn, R.: Explicit evaluation of Euler sums, Proc. Edinburgh Math. 38 (1995), 277–294.CrossrefGoogle Scholar

  • [9]

    Borwein, J.—Borwein, P.—Girgensohn, R.—Parnes, S.: Making sense of experimental mathematics, Math. Intell. 18 (1996), 12–18.Google Scholar

  • [10]

    Borwein, J. M.—Bradley, D. M.—Broadhurst, D. J.: Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k, Electron. J. Combin. 4 (1997), 1–21.Google Scholar

  • [11]

    Borwein, J. M.— Bradley, D. M.—Broadhurst, D. J.—Lisoněk, P.: Special values of multiple polylogarithms, Trans. Amer. Math. Soc. 353 (2001), 907–941.CrossrefGoogle Scholar

  • [12]

    Borwein, J. M.—Zucker, I. J.—Boersma, J.: The evaluation of character Euler double sums, Ramanujan J. 15 (2008), 377–405.Web of ScienceCrossrefGoogle Scholar

  • [13]

    Borwein, J. M.—Girgensohn, R.: Evaluation of triple Euler sums, Electron. J. Combin. (1996), 2–7.Google Scholar

  • [14]

    Coffey, M. W.: On some log-cosine integrals related to ζ(3), ζ(4), and ζ(6), J. Comput. Appl. Math. 159 (2003), 205–215.CrossrefGoogle Scholar

  • [15]

    Coffey, M. W.: On one-dimensional digamma and polygamma series related to the evaluation of Feynman diagrams, J. Comput. Appl. Math. 183 (2005), 84–100.CrossrefGoogle Scholar

  • [16]

    Coffey, M. W.: On a three-dimensional symmetric Ising tetrahedron and contributions to the theory of the dilogarithm and Clausen functions, J. Math. Phys. 49 (2008), 542–555.Web of ScienceGoogle Scholar

  • [17]

    Coffey, M. W.—Lubbers, N.: On generalized harmonic number sums, Appl. Math. Comput. 217 (2010), 689–698.Web of ScienceGoogle Scholar

  • [18]

    Comtet, L.: Advanced Combinatorics, Boston D Reidel Publishing Company, 1974.Google Scholar

  • [19]

    Dil, A.—Boyadzhiev, K. N.: Euler sums of hyperharmonic numbers, J. Number Theory 147 (2015), 490–498.CrossrefWeb of ScienceGoogle Scholar

  • [20]

    Flajolet, P.—Salvy, B.: Euler sums and contour integral representations, Exp. Math. 7 (1998), 15–35.CrossrefGoogle Scholar

  • [21]

    Freitas, P.: Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums, Math. Comput. 74 (2005), 1425–1440.CrossrefGoogle Scholar

  • [22]

    Hessami Pilehrood, Kh.—Hessami Pilehrood, T.—Tauraso, R.: New properties of multiple harmonic sums modulo p and p-analogues of Leshchiner’s series, Trans. Amer. Math. Soc. 366 (2013), 3131–3159.CrossrefGoogle Scholar

  • [23]

    Hoffman, M. E.: Multiple harmonic series, Pacific J. Math. 152 (1992), 275–290.CrossrefGoogle Scholar

  • [24]

    Li, Z.: Another proof of Zagier’s evaluation formula of the multiple zeta values ζ(2, …, 2, 3, 2, …, 2), Math. Res. Lett. 20 (2012).Web of ScienceGoogle Scholar

  • [25]

    Li, Z.: On functional relations for the alternating analogues of Tornheim’s double zeta function, Chinese Ann. Math. 36 (2015), 907–918.CrossrefWeb of ScienceGoogle Scholar

  • [26]

    Markett, C.: Triple sums and the Riemann zeta function, J. Number Theory 48 (1994), 113–132.CrossrefGoogle Scholar

  • [27]

    Machide, T.: Extended double shuffle relations and the generating function of triple zeta values of any fixed weight, Kyushu J. Math. 67 (2013), 281–307.Web of ScienceCrossrefGoogle Scholar

  • [28]

    Mezö, I.—Dil, A.: Hyperharmonic series involving Hurwitz zeta function, J. Number Theory 130 (2010), 360–369.CrossrefWeb of ScienceGoogle Scholar

  • [29]

    Mezö, I.: Nonlinear Euler sums, Pacific J. Math. 272 (2014), 201–226.Web of ScienceCrossrefGoogle Scholar

  • [30]

    Petojevic, A.—Srivastava, H. M.: Computation of the Mordell-Tornheim zeta values, Proc. Amer. Math. Soc. 136 (2008), 2719–2728.Web of ScienceCrossrefGoogle Scholar

  • [31]

    Rassias, T. M.—Srivastava, H. M.: Some classes of infinite series associated with the Riemann zeta function and polygamma functions and generalized harmonic numbers, Appl. Math. Comput. 131 (2002), 593–605.Google Scholar

  • [32]

    Sofo, A.: Integral forms of sums associated with harmonic numbers, Appl. Math. Comput. 207 (2009), 365–372.Web of ScienceGoogle Scholar

  • [33]

    Sofo, A.: Harmonic sums and integral representations, J. Appl. Anal. 16 (2010), 265–277.Google Scholar

  • [34]

    Sofo, A.: Quadratic alternating harmonic number sums, J. Number Theory 154 (2015), 144–159.CrossrefWeb of ScienceGoogle Scholar

  • [35]

    Sofo, A.—Srivastava, H. M.: Identities for the harmonic numbers and binomial coefficients, Ramanujan J. 25 (2011), 93–113.CrossrefWeb of ScienceGoogle Scholar

  • [36]

    Xu, C.: Multiple zeta values and Euler sums, J. Number Theory 177 (2017), 443–478.CrossrefWeb of ScienceGoogle Scholar

  • [37]

    Xu, C.: Identities for the multiple zeta (star) values. Results Math. 73 (2018), 1–22.Web of ScienceGoogle Scholar

  • [38]

    Xu, C.—Cheng, J.: Some results on Euler sums, Funct. et Approx. 54 (2016), 25–37.CrossrefGoogle Scholar

  • [39]

    Xu, C.—Yan, Y.—Shi, Z.: Euler sums and integrals of polylogarithm functions, J. Number Theory 165 (2016), 84–108.CrossrefWeb of ScienceGoogle Scholar

  • [40]

    Zagier, D.: Values of zeta functions and their applications, First European Congress of Mathematics, Volume II, Birkhauser, Boston, 120 (1994), 497–512.Google Scholar

  • [41]

    Zagier, D.: Evaluation of the multiple zeta values ζ(2, …, 2, 3, 2, …, 2), Ann. Math. 2 (2012), 977–1000.Web of ScienceGoogle Scholar

  • [42]

    Zhao, J.: On a conjecture of Borwein, Bradley and Broadhurst, J. Reine Angew. Math. 639 (2010), 223–233.Web of ScienceGoogle Scholar

About the article

Received: 2017-12-06

Accepted: 2018-04-23

Published Online: 2019-03-18

Published in Print: 2019-04-24


(Communicated by Filippo Nuccio)


Citation Information: Mathematica Slovaca, Volume 69, Issue 2, Pages 339–356, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0227.

Export Citation

© 2019 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in