[1]

Alzer, H.—Karayannakis, D.—Srivastava, H. M.: *Series representations for some mathematical constants*, J. Math. Anal. Appl. **320** (2006), 145–162.CrossrefGoogle Scholar

[2]

Andrews, G. E.—Askey, R.—Roy, R.: *Special Functions*, Cambridge University Press, 2000, 481–532.Google Scholar

[3]

Bailey, D. H.—Borwein, J. M.—Girgensohn, R.: *Experimental evaluation of Euler sums*, Exp. Math. **3** (1994), 17–30.CrossrefGoogle Scholar

[4]

Bailey, D. H.—Borwein, J. M.—Crandall, R. E.: *Computation and theory of extended Mordell-Tornheim-Witten sums*, Math. Comp. **83** (2014), 1795–1821.CrossrefGoogle Scholar

[5]

Berndt, B. C.: *Ramanujan’s Notebooks*, *Part I*, Springer-Verlag, New York, 1985.Google Scholar

[6]

Berndt, B. C.: *Ramanujan’s Notebooks*, *Part II*, Springer-Verlag, New York, 1989.Google Scholar

[7]

Blumlein, J.—Kurth, S.: *Harmonic sums and Mellin transforms up to two loop order*, Phys. Rev. D. **60** (1999), 14–18.Google Scholar

[8]

Borwein, D.—Borwein, J. M.—Girgensohn, R.: *Explicit evaluation of Euler sums*, Proc. Edinburgh Math. **38** (1995), 277–294.CrossrefGoogle Scholar

[9]

Borwein, J.—Borwein, P.—Girgensohn, R.—Parnes, S.: *Making sense of experimental mathematics*, Math. Intell. **18** (1996), 12–18.Google Scholar

[10]

Borwein, J. M.—Bradley, D. M.—Broadhurst, D. J.: *Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k*, Electron. J. Combin. **4** (1997), 1–21.Google Scholar

[11]

Borwein, J. M.— Bradley, D. M.—Broadhurst, D. J.—Lisoněk, P.: *Special values of multiple polylogarithms*, Trans. Amer. Math. Soc. **353** (2001), 907–941.CrossrefGoogle Scholar

[12]

Borwein, J. M.—Zucker, I. J.—Boersma, J.: *The evaluation of character Euler double sums*, Ramanujan J. **15** (2008), 377–405.Web of ScienceCrossrefGoogle Scholar

[13]

Borwein, J. M.—Girgensohn, R.: *Evaluation of triple Euler sums*, Electron. J. Combin. (1996), 2–7.Google Scholar

[14]

Coffey, M. W.: *On some log-cosine integrals related to ζ*(3), *ζ*(4), *and ζ*(6), J. Comput. Appl. Math. **159** (2003), 205–215.CrossrefGoogle Scholar

[15]

Coffey, M. W.: *On one-dimensional digamma and polygamma series related to the evaluation of Feynman diagrams*, J. Comput. Appl. Math. **183** (2005), 84–100.CrossrefGoogle Scholar

[16]

Coffey, M. W.: *On a three-dimensional symmetric Ising tetrahedron and contributions to the theory of the dilogarithm and Clausen functions*, J. Math. Phys. **49** (2008), 542–555.Web of ScienceGoogle Scholar

[17]

Coffey, M. W.—Lubbers, N.: *On generalized harmonic number sums*, Appl. Math. Comput. **217** (2010), 689–698.Web of ScienceGoogle Scholar

[18]

Comtet, L.: *Advanced Combinatorics*, Boston *D* Reidel Publishing Company, 1974.Google Scholar

[19]

Dil, A.—Boyadzhiev, K. N.: *Euler sums of hyperharmonic numbers*, J. Number Theory **147** (2015), 490–498.CrossrefWeb of ScienceGoogle Scholar

[20]

Flajolet, P.—Salvy, B.: *Euler sums and contour integral representations*, Exp. Math. **7** (1998), 15–35.CrossrefGoogle Scholar

[21]

Freitas, P.: *Integrals of polylogarithmic functions*, *recurrence relations*, *and associated Euler sums*, Math. Comput. **74** (2005), 1425–1440.CrossrefGoogle Scholar

[22]

Hessami Pilehrood, Kh.—Hessami Pilehrood, T.—Tauraso, R.: *New properties of multiple harmonic sums modulo p and p*-*analogues of Leshchiner’s series*, Trans. Amer. Math. Soc. **366** (2013), 3131–3159.CrossrefGoogle Scholar

[23]

Hoffman, M. E.: *Multiple harmonic series*, Pacific J. Math. **152** (1992), 275–290.CrossrefGoogle Scholar

[24]

Li, Z.: *Another proof of Zagier’s evaluation formula of the multiple zeta values ζ*(2, …, 2, 3, 2, …, 2), Math. Res. Lett. **20** (2012).Web of ScienceGoogle Scholar

[25]

Li, Z.: *On functional relations for the alternating analogues of Tornheim’s double zeta function*, Chinese Ann. Math. **36** (2015), 907–918.CrossrefWeb of ScienceGoogle Scholar

[26]

Markett, C.: *Triple sums and the Riemann zeta function*, J. Number Theory **48** (1994), 113–132.CrossrefGoogle Scholar

[27]

Machide, T.: *Extended double shuffle relations and the generating function of triple zeta values of any fixed weight*, Kyushu J. Math. **67** (2013), 281–307.Web of ScienceCrossrefGoogle Scholar

[28]

Mezö, I.—Dil, A.: *Hyperharmonic series involving Hurwitz zeta function*, J. Number Theory **130** (2010), 360–369.CrossrefWeb of ScienceGoogle Scholar

[29]

Mezö, I.: *Nonlinear Euler sums*, Pacific J. Math. **272** (2014), 201–226.Web of ScienceCrossrefGoogle Scholar

[30]

Petojevic, A.—Srivastava, H. M.: *Computation of the Mordell-Tornheim zeta values*, Proc. Amer. Math. Soc. **136** (2008), 2719–2728.Web of ScienceCrossrefGoogle Scholar

[31]

Rassias, T. M.—Srivastava, H. M.: *Some classes of infinite series associated with the Riemann zeta function and polygamma functions and generalized harmonic numbers*, Appl. Math. Comput. **131** (2002), 593–605.Google Scholar

[32]

Sofo, A.: *Integral forms of sums associated with harmonic numbers*, Appl. Math. Comput. **207** (2009), 365–372.Web of ScienceGoogle Scholar

[33]

Sofo, A.: *Harmonic sums and integral representations*, J. Appl. Anal. **16** (2010), 265–277.Google Scholar

[34]

Sofo, A.: *Quadratic alternating harmonic number sums*, J. Number Theory **154** (2015), 144–159.CrossrefWeb of ScienceGoogle Scholar

[35]

Sofo, A.—Srivastava, H. M.: *Identities for the harmonic numbers and binomial coefficients*, Ramanujan J. **25** (2011), 93–113.CrossrefWeb of ScienceGoogle Scholar

[36]

Xu, C.: *Multiple zeta values and Euler sums*, J. Number Theory **177** (2017), 443–478.CrossrefWeb of ScienceGoogle Scholar

[37]

Xu, C.: *Identities for the multiple zeta (star) values*. Results Math. **73** (2018), 1–22.Web of ScienceGoogle Scholar

[38]

Xu, C.—Cheng, J.: *Some results on Euler sums*, Funct. et Approx. **54** (2016), 25–37.CrossrefGoogle Scholar

[39]

Xu, C.—Yan, Y.—Shi, Z.: *Euler sums and integrals of polylogarithm functions*, J. Number Theory **165** (2016), 84–108.CrossrefWeb of ScienceGoogle Scholar

[40]

Zagier, D.: *Values of zeta functions and their applications*, First European Congress of Mathematics, Volume II, Birkhauser, Boston, **120** (1994), 497–512.Google Scholar

[41]

Zagier, D.: *Evaluation of the multiple zeta values ζ*(2, …, 2, 3, 2, …, 2), Ann. Math. **2** (2012), 977–1000.Web of ScienceGoogle Scholar

[42]

Zhao, J.: *On a conjecture of Borwein*, *Bradley and Broadhurst*, J. Reine Angew. Math. **639** (2010), 223–233.Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.