Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia


IMPACT FACTOR 2018: 0.490

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.279
Source Normalized Impact per Paper (SNIP) 2018: 0.627

Mathematical Citation Quotient (MCQ) 2018: 0.29

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 69, Issue 2

Issues

Gradient estimates for a nonlinear heat equation under the Finsler-Ricci flow

Fanqi Zeng / Qun He
Published Online: 2019-03-19 | DOI: https://doi.org/10.1515/ms-2017-0233

Abstract

This paper considers a compact Finsler manifold (Mn, F(t), m) evolving under the Finsler-Ricci flow and establishes global gradient estimates for positive solutions of the following nonlinear heat equation: tu=Δmu,

where Δm is the Finsler-Laplacian. As applications, several Harnack inequalities are obtained.

MSC 2010: Primary 35K55; Secondary 53C21

Keywords: gradient estimate; nonlinear heat equation; Harnack inequality; Akbarzadeh’s Ricci tensor; Finsler-Ricci flow

References

  • [1]

    Azami, S.—Razavi, A.: Existence and uniqueness for solutions of Ricci flow on Finsler manifolds, Int. J. Geom. Methods Mod. Phys. 10 (2013), 21 pp.Google Scholar

  • [2]

    Bidabad, B.—Yarahmadi, M.: On quasi-Einstein Finsler spaces, Bull. Iranian Math. Soc. 40 (2014), 921–930.Google Scholar

  • [3]

    Bao, D.—Chern, S. S.—Shen, Z. M.: An Introduction to Riemannian-Finsler Geometry. Grad. Texts in Math. 200, Springer-Verlag, 2000.Google Scholar

  • [4]

    Bao, D.—Robles, C.: Ricci and flag curvatures in Finsler geometry. A sampler of Riemann-Finsler geometry. Math. Sci. Res. Inst. Publ. 50, Cambridge Univ. Press, Cambridge, 2004.Google Scholar

  • [5]

    Bao, D.: On two curvature-driven problems in Riemann-Finsler geometry. In: Finsler Geometry in Memory of Makoto Matsumoto, Adv. Stud. Pure Math. 48, Math. Soc., Japan, Tokyo, 2007, pp. 19–71.Google Scholar

  • [6]

    Bailesteanu, M.—Cao, X. D.—Pulemotov, A.: Gradient estimates for the heat equation under the Ricci flow, J. Funct. Anal. 258 (2010), 3517–3542.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    Guenther, C. M.: The fundamental solution on manifolds with time-dependent metrics, J. Geom. Anal. 12 (2002), 425–436.CrossrefGoogle Scholar

  • [8]

    Hamilton, R.: A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), 113–125.CrossrefGoogle Scholar

  • [9]

    Li, P.—Yau, S. T.: On the parabolic kernel of the Schröinger operator, Acta Math. 156 (1986), 153–201.CrossrefGoogle Scholar

  • [10]

    Li, J. Y.: Gradient estimate for the heat kernel of a complete Riemannian manifold and its applications, J. Funct. Anal. 97 (1991), 293–310.CrossrefGoogle Scholar

  • [11]

    Liu, S. P.: Gradient estimates for solutions of the heat equation under Ricci flow, Pacific J. Math. 243 (2009), 165–180.CrossrefWeb of ScienceGoogle Scholar

  • [12]

    Li, J. F.—Xu, X. J.: Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv. Math. 226 (2011), 4456–4491.CrossrefWeb of ScienceGoogle Scholar

  • [13]

    Lakzian, S.: Differential Harnack estimates for positive solutions to heat equation under Finsler-Ricci flow, Pacific J. Math. 278 (2015), 447–462.CrossrefWeb of ScienceGoogle Scholar

  • [14]

    Ma, L.: Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds, J. Funct. Anal. 241 (2006), 374–382.CrossrefGoogle Scholar

  • [15]

    Ohta, S.—Sturm, K. T.: Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009), 1386–1433.CrossrefGoogle Scholar

  • [16]

    Ohta, S.—Sturm, K. T.: Bochner-Weitzenbock formula and Li-Yau estimates on Finsler manifolds, Adv. Math. 252 (2014), 429–448.Web of ScienceCrossrefGoogle Scholar

  • [17]

    Ohta, S.: Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009), 211–249.Web of ScienceCrossrefGoogle Scholar

  • [18]

    Ohta, S.: Vanishing s-curvature of randers spaces, Differential Geom. Appl. 29 (2011), 174–178.CrossrefGoogle Scholar

  • [19]

    Sun, J.: Gradient estimates for positive solutions of the heat equation under geometric flow, Pacific J. Math. 253 (2011), 489–510.CrossrefWeb of ScienceGoogle Scholar

  • [20]

    Yang, Y. Y.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds, Proc. Amer. Math. Soc. 136 (2008), 4095–4102.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    Zeng, F. Q.—He, Q.: Gradient estimates and Harnack inequalities of a nonlinear heat equation for the Finsler-Laplacian on Finsler manifolds, preprint.Google Scholar

About the article

This work was supported by NNSFC (Nos. 11471246, 11671361) and Nanhu Scholars Program for Young Scholars of XYNU.


Received: 2017-09-30

Accepted: 2018-03-29

Published Online: 2019-03-19

Published in Print: 2019-04-24


(Communicated by Július Korbaš)


Citation Information: Mathematica Slovaca, Volume 69, Issue 2, Pages 409–424, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0233.

Export Citation

© 2019 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in