Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nonautonomous Dynamical Systems

formerly Nonautonomous and Stochastic Dynamical Systems

Editor-in-Chief: Diagana, Toka

Managing Editor: Cánovas, Jose

1 Issue per year


Mathematical Citation Quotient (MCQ) 2016: 0.56


Emerging Science

Open Access
Online
ISSN
2353-0626
See all formats and pricing
More options …

Global φ-attractor for a modified 3D Bénard system on channel-like domains

O.V. Kapustyan
  • Corresponding author
  • Taras Shevchenko National University of Kyiv, Institute for Applied System Analysis NASU, Kyiv, Ukraine
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A.V. Pankov
Published Online: 2013-07-08 | DOI: https://doi.org/10.2478/msds-2013-0001

Abstract

In this paper we prove the existence of a global '-attractor in the weak topology of the natural phase space for the family of multi-valued processes generated by solutions of a nonautonomous modified 3D Bénard system in unbounded domains for which Poincaré inequality takes place

Keywords: Three-dimensional Bénard problem; three-dimensional Navier-Stokes equations; multi-valued nonautonomous dynamical system; global attractor; unbounded domain

References

  • [1] J. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, in "Mechanics: from theory to computation", Springer, New York, 2000, p. 447-474.Google Scholar

  • [2] M. Cabral, R. Rosa, R. Temam, Existence and dimension of the attractor for the Bénard problem on channel-like domain, Discrete Contin. Dyn. Syst., 10 (2004), 89-116.Google Scholar

  • [3] T. Caraballo, P.E. Kloeden, J. Real, Unique strong solution and V-attractor of three-dimensional system of globally modified Navier-Stokes equation, Advanced Nonlinear Studies, 6 (2006), 411-436.Google Scholar

  • [4] V.V. Chepyzhov, M.I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl. 76 (1997), 913-964.Google Scholar

  • [5] C. Foias, R. Temam, The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory, in "Directions in Partial Differential Equations", Academic Press, 1987, p.55-73.Google Scholar

  • [6] O.A. Ladyzhenskaya, "Attractors of semigroups and evolution equations", Cambridge University Press, Cambridge, 1991.Google Scholar

  • [7] J.L. Lions, "Quelques méthodes de résolutions des problèmes aux limites non linéaires", Dunod, Gauthier-Villars, Paris, 1969.Google Scholar

  • [8] O.V. Kapustyan, V.S. Melnik, J. Valero, A weak attractors and properties of solutions for the three-dimensional Bénard problem, Discrete Contin. Dyn. Syst., 18 (2007), 449-481.Google Scholar

  • [9] O.V. Kapustyan, A.V. Pankov, J. Valero, On global attractors of multivalued semiflows generated by the 3D Bénard system, Set-Valued and Variat. Anal., 20 (2012), 445-465.Web of ScienceGoogle Scholar

  • [10] O.V. Kapustyan, J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278.Google Scholar

  • [11] P.E. Kloeden, J. Valero, The Kneser property of the weak solutions of the three-dimensional Navier-Stokes equations, Discrete Contin. Dyn. Syst., 28 (2010), 161-179.Google Scholar

  • [12] V.S. Melnik, J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal. 6 (1998), 83-111.Google Scholar

  • [13] D.E. Norman, Chemically reacting fluid flows: weak solutions and global attractors, J. Differential Equations, 152 (1999), 75-135.Google Scholar

  • [14] J. Robinson, "Infinite-dimensional dynamical systems", Cambridge University Press, Cambridge, 2001.Google Scholar

  • [15] M. Romito, The uniqueness of weak solutions of the globally modified Navier-Stokes equations, Advanced Nonlinear Studies, 9 (2009), 425-427.Google Scholar

  • [16] R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domain, Nonlinear Anal., 32 (1998), 71-85.Google Scholar

  • [17] G. Sell, Global attractors for the three-dimensional Navier-Stokes equations, J. Dynamics Differential Equations 8 (1996), 1-33.Google Scholar

  • [18] G.R. Sell, Y. You, "Dynamics of evolutionary equations", Springer, New-York, 2002.Google Scholar

  • [19] J. Simon, "Compact sets in the space Lp(0; T ;B)", Ann. Mat. Pura Appl. 146 (1986), 65-96.Google Scholar

  • [20] J. Simsen, C. Gentile, On attractors for multivalued semigroups defined by generalized semiflows, Set-Valued Anal., 16 (2008), 105-124.Web of ScienceGoogle Scholar

  • [21] R. Temam, "Navier-Stokes equations", North-Holland, Amsterdam, 1979.Google Scholar

  • [22] R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics", Springer-Verlag, New York, 1988.Google Scholar

  • [23] M.Z.Zgurovsky, P.O. Kasyanov, O.V. Kapustyan, J. Valero, N.V. Zadoinchuk, "Evolution inclusions and variational inequalities for Earth data processing III", Springer-Verlag, New York, 2012. Google Scholar

About the article

Published Online: 2013-07-08

Published in Print: 2014-01-01


Citation Information: Nonautonomous Dynamical Systems, ISSN (Online) 2353-0626, DOI: https://doi.org/10.2478/msds-2013-0001.

Export Citation

© 2013 O.V. Kapustyan, A. V. Pankov. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in