Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nonautonomous Dynamical Systems

formerly Nonautonomous and Stochastic Dynamical Systems

Editor-in-Chief: Diagana, Toka

Managing Editor: Cánovas, Jose

Mathematical Citation Quotient (MCQ) 2017: 0.71

Open Access
See all formats and pricing
More options …

Compact Global Chaotic Attractors of Discrete Control Systems

David Cheban
  • Corresponding author
  • State University of Moldova Department of Mathematics and Informatics A. Mateevich Street 60 MD–2009 Chi³in˘au, Moldova
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-03 | DOI: https://doi.org/10.2478/msds-2013-0002


The paper is dedicated to the study of the problem of existence of compact global chaotic attractors of discrete control systems and to the description of its structure. We consider so called switched systems with discrete time xn+1 = fv(n)(xn), where v: Z+ → {1; 2; : : : ;m}. If m≥2 we give sufficient conditions (the family M := {f1; f2; : : : ; fm} of functions is contracting in the extended sense) for the existence of a compact global chaotic attractor. We study this problem in the framework of non-autonomous dynamical systems (cocycles)

Keywords: Global attractor; set-valued dynamical system; control system; chaotic attractor; collage; cocycle


  • [1] V. M. Alekseev, Symbolic Dynamics, The 11th Mathematical School. Kiev, Naukova Dumka, 1986.Google Scholar

  • [2] M. F. Barnsley, Fractals everywhere, New York, Academic Press, 1988.Google Scholar

  • [3] N. A. Bobylev, S. V. Emel’yanov, S. K. Korovin, Attractors of Discrete Controlled Systems in Metric Spaces. Computational Mathematics and Modeling, 11 (2000), 321-326; Translated from Prikladnaya Mathematika i Informatika, 3, (1999), 5-10.Google Scholar

  • [4] V. A. Bondarenko, V. L. Dolnikov, Fractal Image Compression by The Barnsley-Sloan Method, Automation and Remote Control, 55, (1994), 623-629; Translated from Avtomatika i Telemekhanika, 5, (1994), 12-20.Google Scholar

  • [5] H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert, Math.Studies, 5, North Holland, 1973.Google Scholar

  • [6] D. N. Cheban, Global Attractors of Nonautonomous Dissipstive Dynamical Systems. Interdisciplinary Mathematical Sciences, 1, River Edge, New Jersey, World Scientific, 2004.CrossrefGoogle Scholar

  • [7] D. N. Cheban, Compact Global Attractors of Control Systems. Journal of Dynamical and Control Systems, 16 (2010), 23-44.Google Scholar

  • [8] D. N. Cheban, Global Attractors of Set-Valued Dynamical and Control Systems. Nova Science Publishers Inc, New York, 2010.Google Scholar

  • [9] D. N. Cheban, C. Mammana, Global Compact Attractors of Discrete Inclusions. Nonlinear Analyses: TMA, 65, (2006), 1669-1687.Google Scholar

  • [10] D. N. Cheban, B. Schmalfuss, Invariant Manifolds, Global Attractors, Almost Automrphic and Almost Periodic Solutions of Non-Autonomous Differential Equations. J. Math. Anal. Appl., 340, (2008), 374-393.Web of ScienceGoogle Scholar

  • [11] L. Gurvits, Stability of Discrete Linear Inclusion. Linear Algebra Appl., 231 (1995), 47-85.Google Scholar

  • [12] B. M. Levitan, V. V. Zhikov, Almost Periodic Functions and Differential Equations. Moscow State University Press, 1978. (in Russian) [English translation in Cambridge Univ. Press, Cambridge, 1982.]Google Scholar

  • [13] J. L. Lions, Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris, 1969.Google Scholar

  • [14] C. Robinson, Dynamical Systems: Stabilty, Symbolic Dynamics and Chaos (Studies in Advanced Mathematics). Boca Raton Florida, CRC Press, 1995.Google Scholar

  • [15] G. R. Sell, Topological Dynamics and Ordinary Differential Equations. Van Nostrand-Reinhold, London, 1971.Google Scholar

  • [16] B. A. Shcherbakov, Topological Dynamics and Poisson’s Stability of Solutions of Differential Equations. Kishinev, Shtiintsa, 1972 (in Russian).Google Scholar

  • [17] K. S. Sibirskii, A. S. Shube, Semidynamical Systems. Stiintsa, Kishinev 1987 (in Russian). Google Scholar

About the article

Received: 2012-10-26

Accepted: 2013-06-14

Published Online: 2013-07-03

Published in Print: 2014-01-01

Citation Information: Nonautonomous Dynamical Systems, Volume 1, Issue 1, ISSN (Online) 2353-0626, DOI: https://doi.org/10.2478/msds-2013-0002.

Export Citation

© 2013 David Cheban. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jose Cánovas
Entropy, 2013, Volume 15, Number 8, Page 3100

Comments (0)

Please log in or register to comment.
Log in