Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Nonautonomous Dynamical Systems

formerly Nonautonomous and Stochastic Dynamical Systems

Editor-in-Chief: Diagana, Toka

Managing Editor: Cánovas, Jose

1 Issue per year

Mathematical Citation Quotient (MCQ) 2015: 0.33

Emerging Science

Open Access
See all formats and pricing
In This Section

Compact Global Chaotic Attractors of Discrete Control Systems

David Cheban
  • Corresponding author
  • State University of Moldova Department of Mathematics and Informatics A. Mateevich Street 60 MD–2009 Chi³in˘au, Moldova
  • Email:
Published Online: 2013-07-03 | DOI: https://doi.org/10.2478/msds-2013-0002


The paper is dedicated to the study of the problem of existence of compact global chaotic attractors of discrete control systems and to the description of its structure. We consider so called switched systems with discrete time xn+1 = fv(n)(xn), where v: Z+ → {1; 2; : : : ;m}. If m≥2 we give sufficient conditions (the family M := {f1; f2; : : : ; fm} of functions is contracting in the extended sense) for the existence of a compact global chaotic attractor. We study this problem in the framework of non-autonomous dynamical systems (cocycles)

Keywords: Global attractor; set-valued dynamical system; control system; chaotic attractor; collage; cocycle


  • [1] V. M. Alekseev, Symbolic Dynamics, The 11th Mathematical School. Kiev, Naukova Dumka, 1986.

  • [2] M. F. Barnsley, Fractals everywhere, New York, Academic Press, 1988.

  • [3] N. A. Bobylev, S. V. Emel’yanov, S. K. Korovin, Attractors of Discrete Controlled Systems in Metric Spaces. Computational Mathematics and Modeling, 11 (2000), 321-326; Translated from Prikladnaya Mathematika i Informatika, 3, (1999), 5-10.

  • [4] V. A. Bondarenko, V. L. Dolnikov, Fractal Image Compression by The Barnsley-Sloan Method, Automation and Remote Control, 55, (1994), 623-629; Translated from Avtomatika i Telemekhanika, 5, (1994), 12-20.

  • [5] H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert, Math.Studies, 5, North Holland, 1973.

  • [6] D. N. Cheban, Global Attractors of Nonautonomous Dissipstive Dynamical Systems. Interdisciplinary Mathematical Sciences, 1, River Edge, New Jersey, World Scientific, 2004. [Crossref]

  • [7] D. N. Cheban, Compact Global Attractors of Control Systems. Journal of Dynamical and Control Systems, 16 (2010), 23-44.

  • [8] D. N. Cheban, Global Attractors of Set-Valued Dynamical and Control Systems. Nova Science Publishers Inc, New York, 2010.

  • [9] D. N. Cheban, C. Mammana, Global Compact Attractors of Discrete Inclusions. Nonlinear Analyses: TMA, 65, (2006), 1669-1687.

  • [10] D. N. Cheban, B. Schmalfuss, Invariant Manifolds, Global Attractors, Almost Automrphic and Almost Periodic Solutions of Non-Autonomous Differential Equations. J. Math. Anal. Appl., 340, (2008), 374-393. [Web of Science]

  • [11] L. Gurvits, Stability of Discrete Linear Inclusion. Linear Algebra Appl., 231 (1995), 47-85.

  • [12] B. M. Levitan, V. V. Zhikov, Almost Periodic Functions and Differential Equations. Moscow State University Press, 1978. (in Russian) [English translation in Cambridge Univ. Press, Cambridge, 1982.]

  • [13] J. L. Lions, Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris, 1969.

  • [14] C. Robinson, Dynamical Systems: Stabilty, Symbolic Dynamics and Chaos (Studies in Advanced Mathematics). Boca Raton Florida, CRC Press, 1995.

  • [15] G. R. Sell, Topological Dynamics and Ordinary Differential Equations. Van Nostrand-Reinhold, London, 1971.

  • [16] B. A. Shcherbakov, Topological Dynamics and Poisson’s Stability of Solutions of Differential Equations. Kishinev, Shtiintsa, 1972 (in Russian).

  • [17] K. S. Sibirskii, A. S. Shube, Semidynamical Systems. Stiintsa, Kishinev 1987 (in Russian).

About the article

Received: 2012-10-26

Accepted: 2013-06-14

Published Online: 2013-07-03

Published in Print: 2014-01-01

Citation Information: Nonautonomous Dynamical Systems, ISSN (Online) 2353-0626, DOI: https://doi.org/10.2478/msds-2013-0002. Export Citation

© 2013 David Cheban. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in