Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nonautonomous Dynamical Systems

formerly Nonautonomous and Stochastic Dynamical Systems

Editor-in-Chief: Diagana, Toka

Managing Editor: Cánovas, Jose

1 Issue per year


Mathematical Citation Quotient (MCQ) 2016: 0.56


Emerging Science

Open Access
Online
ISSN
2353-0626
See all formats and pricing
More options …

Chaos synchronization of a fractional nonautonomous system

Zakia Hammouch
  • Corresponding author
  • E3MI Group Department of Mathematics„ FSTE Moulay Ismail University„ BP 509 Boutalamine Errachidia 52000, Morocco
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Toufik Mekkaoui
  • E3MI Group Department of Mathematics„ FSTE Moulay Ismail University„ BP 509 Boutalamine Errachidia 52000, Morocco
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-20 | DOI: https://doi.org/10.2478/msds-2014-0001

Abstract

In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the efiectiveness of the proposed methods

Keywords: Chaos; Fractional-order system; Active control; PLL; Synchronization

References

  • [1] E.W. Bai, K. E. Lonngren, Synchronization of two Lorenz systems using active control, Chaos, Solitons Fractals, 8 (1997) pp.51-58.CrossrefGoogle Scholar

  • [2] A. Blokh, C. Cleveland, M. Misiurewicz, Expanding polymodials. Modern dynamical systems and applications, 253-270, Cambridge Univ. Press, Cambridge, 2004.Google Scholar

  • [3] R.Caponetto, G.Dongola, and L.Fortuna, Fractional order systems: Modeling and control application, World Scientifc, Singapore, 2010.Google Scholar

  • [4] M. Caputo, Linear models of dissipation whose Q is almost frequency independent, J. Roy. Astral.Soc. 13(1967) pp.529-539.CrossrefGoogle Scholar

  • [5] A. Chamgoué, R. Yamapi and P. Woafo, Bifurcations in a birhythmic biological system with time-delayed noise, Nonlinear Dynamics. 73, (2013) pp.2157-2173.Web of ScienceGoogle Scholar

  • [6] K.Diethelm and N.Ford, Analysis of fractional diferential equations. Journal of Mathematical Analysis and Applications, 265 (2002) pp.229-248.Google Scholar

  • [7] K.Diethelm, N.Ford, A.Freed and Y.Luchko, Algorithms for the fractional calculus: a selection of numerical method, Computer Methods in Applied Mechanics and Engineering, 94 (2005) pp.743-773.CrossrefGoogle Scholar

  • [8] H. Frohlich. Long Range Coherence and energy storage in a Biological systems. Int. J. Quantum Chem. 641 (1968) pp.649-652.CrossrefGoogle Scholar

  • [9] H. Frohlich, Quantum Mechanical Concepts in Biology. Theoretical Physics and Biology.(1969).Google Scholar

  • [10] M. Haeri and A. Emadzadeh, Synchronizing diferent chaotic systems using active sliding mode control, Chaos, Solitons and Fractals. 31 (2007) pp.119-129.CrossrefGoogle Scholar

  • [11] G.He and M.Luo, Dynamic behavior of fractional order Dufng chaotic system and its synchronization via singly active control, Appl. Math. Mech. Engl. Ed., 33 (2012), pp.567-582.CrossrefGoogle Scholar

  • [12] W. Hongwu and M. Junhai, Chaos Controland Synchronization of a Fractional-order Autonomous System, WSEAS Trans. on Mathematics. 11, , (2012) pp. 700-711.Google Scholar

  • [13] H.G.Kadji, J.B.Orou, R. Yamapi and P. Woafo, Nonlinear Dynamics and Strange Attractors in the Biological System. Chaos Solitons and Fractals. 32 (2007) pp.862-882.Web of ScienceCrossrefGoogle Scholar

  • [14] F. Kaiser, Coherent Oscillations in Biological Systems I. Bifurcations Phenomena and Phase transitions in enzymesubstrate reaction with Ferroelectric behaviour. Z Naturforsch A. 294 (1978) pp.304-333.Google Scholar

  • [15] F. Kaiser, Coherent Oscillations in Biological Systems II. Lecture Notes in Mathematics, 1907. Springer, Berlin, (2007).Google Scholar

  • [16] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Science. 20, (1963) pp.130-141.Google Scholar

  • [17] L. Lu, C. Zhang and Z.A. Guo, Synchronization between two diferent chaotic systems with nonlinear feedback control, Chinese Physics, 16(2007) pp.1603-1607.Google Scholar

  • [18] D. Matignon. Stability results for fractional diferential equations with applications to control processing.Proceedings Comp. Eng. Sys. Appl., 963-968, 1996.Google Scholar

  • [19] K.S Miller and B. Rosso, An Introduction to the Fractional Calculus and Fractional Diferential Equations. Wiley, New York 1993.Google Scholar

  • [20] K. B. Oldham and J. Spanier, The Fractional Calculus. Academic Press, New York, NY, USA, 1974.Google Scholar

  • [21] O.Olusola, E. Vincent,N. Njah and E. Ali, Control and Synchronization of Chaos in Biological Systems Via Backsteping Design. International Journal of Nonlinear Science . 11 (2011) pp.121-128Google Scholar

  • [22] V.T.Pham, M.Frasca, R.Caponetto, T.M.Hoang and Luigi Fortuna, Control and synchronization of fractional-order diferential equations of phase-locked-loop. Chaotic Modeling and Simulation (CMSIM), 4. (2012) pp.623-631.Google Scholar

  • [23] L.M. Pecora and T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64, (1990) pp.821-824.CrossrefGoogle Scholar

  • [24] I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, 2011.Google Scholar

  • [25] A.Pikovsky, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press 2011.Google Scholar

  • [26] I.Podlubny, Fractional Diferential Equations: Mathematics in Science and Engineering. Academic Press-USA 1999.Google Scholar

  • [27] S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, Perseus Books Pub., 1994.Google Scholar

  • [28] A. Ucar, K.E. Lonngren and E.W. Bai, Synchronization of the unifed chaotic systems via active control, Chaos, Solitons and Fractals. 27 (2006) pp.1292-97.CrossrefGoogle Scholar

  • [29] Y. Wang, Z.H. Guan and H.O. Wang, Feedback an adaptive control for the synchronization of Chen system via a single variable, Phys. Lett A. 312 (2003) pp.34-40.Google Scholar

  • [30] G. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, 2008. Google Scholar

About the article

Received: 2013-12-30

Accepted: 2014-02-14

Published Online: 2014-03-20

Published in Print: 2014-01-01


Citation Information: Nonautonomous Dynamical Systems, ISSN (Online) 2353-0626, DOI: https://doi.org/10.2478/msds-2014-0001.

Export Citation

© 2014 Zakia Hammouch, Toufik Mekkaoui. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in