Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Nonautonomous Dynamical Systems

formerly Nonautonomous and Stochastic Dynamical Systems

Editor-in-Chief: Diagana, Toka

Managing Editor: Cánovas, Jose

1 Issue per year


Mathematical Citation Quotient (MCQ) 2015: 0.33


Emerging Science

Open Access
Online
ISSN
2353-0626
See all formats and pricing
In This Section

Existence of different kind of solutions for discrete time equations

Denis Pennequin
  • Corresponding author
  • Université Paris 1 Panthéon-Sorbonne, Laboratoire SAMM, Centre PMF, 90 rue de Tolbiac, 75634 PARIS Cedex 13, France
  • Email:
Published Online: 2014-08-15 | DOI: https://doi.org/10.2478/msds-2014-0005

Abstract

The aim of this paper is to extend the classical linear condition concerning diagonal dominant bloc matrix to fully nonlinear equations. Even if assumptions are strong, we obtain an explicit condition which exactly extend the one known in linear case, and the setting allows also to consider bicontinuous operator instead of the schift and as particular case, we receive periodic or almost periodic solutions for discrete time equations.

Keywords: Discrete time equation; Diagonal dominant bloc condition; periodic and almost periodic sequences

References

  • [1] J. Andres, D. Pennequin. On Stepanov almost-periodic ocillations and their discretizations. J. Difference Eqns Appl. (2011),

  • [2] J. Andres, D. Pennequin. On the nonexistence of purely Stepanov almost-periodic solutions of ordinary differential equations. Proc. Amer. Math. Soc. 140 (2012), 2825-2834. [Crossref]

  • [3] J. Blot, B. Crettez. On the smoothness of optimal paths. Decisions in Economics and Finance. 27(2004), 1-34, DOI: 10.1007/s10203-004-0042-5 [Crossref]

  • [4] J. Blot, B. Crettez. On the smoothness of optimal paths II: some turnpike results. Decisions in Economics and Finance. 30 (2004), 137-150, 2004, DOI: 10.1007/s10203-007-0072-x [Crossref]

  • [5] J. Blot, D. Pennequin. Existence and structure results on almost periodic solutions of difference equations.J. Differ. Equa. Appl. 7 (2001), 383-402.

  • [6] P. G. Ciarlet, Introduction à l'analyse numérique matricielle età l'optimisation, Masson, Paris, 1994

  • [7] C. Corduneanu, Almost Periodic Functions, Chelsea Publ. Comp., 1989.

  • [8] C. Corduneanu, Almost Periodic Oscillations and Waves, Springer, New-York, 2009.

  • [9] D.G. De Figueiredo, Lectures on the Ekeland variational principle with applications and detours, Tata Institute of fundamental Research, Bombay, 1989

  • [10] C. Kahane. Stability of Solutions of Linear Systems with Dominant Main Diagonal. Proc. Amer. Math. Soc. 33 (1972), No. 1 69-71. [Crossref]

  • [11] J.-L. Mauclaire, Intégration et Théorie des Nombres, Hermann, Paris, 1986.

  • [12] D. Pennequin. Notion of WeakVariational Solutions for Almost Periodic or More General Problems. African Diaspora J. Math. 15 (2013) no 2,101-110.

About the article

Received: 2013-12-29

Accepted: 2014-05-11

Published Online: 2014-08-15



Citation Information: Nonautonomous Dynamical Systems, ISSN (Online) 2299-3193, DOI: https://doi.org/10.2478/msds-2014-0005. Export Citation

© 2014 Denis Pennequin. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in