Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Nonautonomous Dynamical Systems

formerly Nonautonomous and Stochastic Dynamical Systems

Editor-in-Chief: Diagana, Toka

Managing Editor: Cánovas, Jose

1 Issue per year


Mathematical Citation Quotient (MCQ) 2015: 0.33


Emerging Science

Open Access
Online
ISSN
2353-0626
See all formats and pricing
In This Section

Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications

Mark O. Gluzman
  • Corresponding author
  • Institute for Applied System Analysis, National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremogy ave., 37, build, 35, 03056, Kyiv, Ukraine,
/ Nataliia V. Gorban
  • Corresponding author
  • Institute for Applied System Analysis, National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremogy ave., 37, build, 35, 03056, Kyiv, Ukraine,
/ Pavlo O. Kasyanov
  • Corresponding author
  • Institute for Applied System Analysis, National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremogy ave., 37, build, 35, 03056, Kyiv, Ukraine,
Published Online: 2015-05-25 | DOI: https://doi.org/10.1515/msds-2015-0001

Abstract

In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued interaction functions; (ii) convergence results for all weak solutions in the strongest topologies; (iii) new structure and regularity properties for global and trajectory attractors. The obtained results allow investigating the long-time behavior of state functions for the following problems: (a) a model of combustion in porous media; (b) a model of conduction of electrical impulses in nerve axons; (c) a climate energy balance model; (d) a parabolic feedback control problem.

Keywords: Lyapunov function; Regularity; Attractor

References

  • [1] J.M. Arrieta, A. Rodrígues-Bernal, J. Valero, Dynamics of a reaction-diffusion equation with discontinuous nonlinearity, International Journal of Bifurcation and Chaos 16(2006), 2695–2984.

  • [2] Balibrea, F., Caraballo, T., Kloeden, P.E., Valero, J.: Recent developments in dynamical systems: three perspectives. International Journal of Bifurcation and Chaos (2010). DOI: 10.1142/S0218127410027246 [Crossref] [Web of Science]

  • [3] M.I. Budyko, The effects of solar radiation variations on the climate of the Earth, Tellus 21(1969) 611–619. [Crossref]

  • [4] J.M. Ball, Continuity properties and attractors of generalized semiflows and the Navier-Stokes equations, Journal of Nonlinear Science 7(1997) 475–502. Erratum, ibid 8:233,1998. Corrected version appears in ‘Mechanics: from Theory to Computation’, pages 447–474, Springer Verlag, 2000. [Crossref]

  • [5] J.M. Ball, Global attractors for damped semilinear wave equations, DCDS 10(2004) 31–52. [Crossref]

  • [6] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucuresti, 1976.

  • [7] V.V. Chepyzhov, M.I. Vishik, Trajectory and Global Attractors of Three-Dimensional Navier–Stokes Systems, Mathematical Notes 71(2002) 177–193, doi: 10.1023/A:1014190629738. [Crossref]

  • [8] V.V. Chepyzhov, M.I. Vishik, Trajectory attractor for reaction-diffusion system with diffusion coeflcient vanishing in time, Discrete and Continuous Dynamical Systems – Series A. 27(2013) 1493–1509.

  • [9] V.V. Chepyzhov, Conti M., V. Pata, A minimal approach to the theory of global attractors, Discrete and Continuous Dynamical Systems. 32(2012) 2079–2088.

  • [10] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, Inc., New York, 1983.

  • [11] H. D´iaz, J. D´iaz, On a stochastic parabolic PDE arising in climatology, Rev. R. Acad. Cien. Serie A Mat. 96(2002) 123–128.

  • [12] J. D´iaz, J. Hern´andez, L. Tello, On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology, J. Math. Anal. Appl. 216(1997) 593–613.

  • [13] J. D´iaz, J. Hern´andez, L. Tello, Some results about multiplicity and bifurcation of stationary solutions of a reaction diffusion climatological model, Rev. R. Acad. Cien. Serie A. Mat. 96(3)(2002) 357–366.

  • [14] J. D´iaz, L. Tello, Infinitely many stationary solutions for a simple climate model via a shooting method, Math. Meth. Appl. Sci. 25 (2002) 327–334.

  • [15] E. Feireisl, J. Norbury, Some existence and nonuniqueness theorems for solutions of parabolic equationswith discontinuous nonlinearities, Proc. Roy. Soc. Edinburgh A. 119(1–2)(1991) 1–17.

  • [16] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare operatorgleichungen und operatordifferentialgleichungen, Akademie- Verlag, Berlin, 1974

  • [17] M.O. Gluzman, N.V. Gorban, P.O. Kasyanov, Lyapunov type functions for classes of autonomous parabolic feedback control problems and applications, Applied Mathematics Letters 39(2015) 19-21, doi: 10.1016 / j.aml.2014.08 .006 [Crossref] [Web of Science]

  • [18] G.R. Goldstein, A. Miranville, A Cahn-Hilliard-Gurtin Model With Dynamic Boundary Conditions, Discrete & Continuous Dynamical Systems – Series S 6(2013)

  • [19] N.V. Gorban, O.V. Kapustyan, P.O. Kasyanov, Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Caratheodory’s nonlinearity, Nonlinear Analysis, Theory, Methods and Applications 98(2014) 13–26, doi: 10.1016/j.na.2013.12.004. [Crossref]

  • [20] N.V. Gorban, P.O. Kasyanov, On regularity of all weak solutions and their attractors for reaction-diffusion inclusion in unbounded domai, Solid Mechanics and its Applications 211(2014) 205–220.

  • [21] N.V. Gorban, O.V. Kapustyan, P.O. Kasyanov, L.S. Paliichuk, On global attractors for autonomous damped wave equation with discontinuous nonlinearity, Solid Mechanics and its Applications 211(2014) 221–237.

  • [22] M. Efendiev, A. Miranville, S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in R3, Comptes Rendus de l’Academie des Sciences-Series I – Mathematics 330 (2000) 713–718

  • [23] P. Kalita, G. Lukaszewicz, Global attractors for multivalued semiflows with weak continuity properties, Nonlinear Analysis: Theory, Methods & Applications, 101 (2014) 124–143.

  • [24] P. Kalita, G. Lukaszewicz, Attractors for Navier–Stokes flows with multivalued and nonmonotone subdifferential boundary conditions, Nonlinear Analysis: Real World Applications 19(2014) 75–88. [Crossref] [Web of Science]

  • [25] O.V. Kapustyan, P.O. Kasyanov, J. Valero, M.Z. Zgurovsky, Structure of uniform global attractor for general non-autonomous reaction-diffusion system, Solid Mechanics and its Applications 211(2014) 163–180.

  • [26] O.V. Kapustyan, P.O. Kasyanov, J. Valero, Regular solutions and global attractors for reaction-diffusion systems without uniqueness, Communications on Pure and Applied Analysis 13(2014) 1891–1906, doi:10.3934/cpaa.2014.13.1891. [Crossref]

  • [27] O.V. Kapustyan, P.O. Kasyanov, J. Valero, Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term, Communications on Pure and Applied Analysis 34(2014) 4155–4182, doi:10.3934/dcds.2014.34.4155. [Crossref]

  • [28] P.O. Kasyanov, L. Toscano, N.V. Zadoianchuk, Regularity of Weak Solutions and Their Attractors for a Parabolic Feedback Control Problem, Set-Valued Var. Anal. 21(2013) 271-282, doi: 10.1007/s11228-013-0233-8. [Crossref]

  • [29] P.O. Kasyanov, Multivalued dynamics of solutions of an autonomous differential-operator inclusion with pseudomonotone nonlinearity, Cybernetics and Systems Analysis 47(2011) 800–811. [Crossref]

  • [30] P.O. Kasyanov, Multivalued dynamics of solutions of autonomous operator differential equations with pseudomonotone nonlinearity, Mathematical Notes 92(2012) 205–218. [Crossref] [Web of Science]

  • [31] P.O. Kasyanov, L. Toscano, N.V. Zadoianchuk, Long-Time Behaviour of Solutions for Autonomous Evolution Hemivariational Inequality with Multidimensional ‘Reaction-Displacement’ Law, Abstract and Applied Analysis 2012(2012) 21 pages, doi:10.1155/2012/450984. [Crossref] [Web of Science]

  • [32] V.S. Melnik, J. Valero, On attractors of multivalued semiflows and differential inclusions. Set Valued Anal. 6(1998) 83–111, doi:10.1023/A:1008608431399. [Crossref] [Web of Science]

  • [33] S. Mig´orski, On the existence of solutions for parabolic hemivariational inequalities. Journal of Computational and Applied Mathematics 129(2001), 77–87.

  • [34] S. Mig´orski, A. Ochal, Optimal Control of Parabolic Hemivariational Inequalities, Journal of Global Optimization 17(2000) 285–300. [Crossref]

  • [35] F. Morillas, J. Valero, Attractors for reaction-diffusion equation in Rn with continuous nonlinearity. Asymptotic Analysis 44(2005), 111–130.

  • [36] M. Otani, H. Fujita, On existence of strong solutions for du dt (t)+@'1(u(t))−@'2(u(t)) ∋ f (t), Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics. 24(3)(1977) 575–605.

  • [37] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhauser, Basel, 1985.

  • [38] G.R. Sell, Yu. You, Dynamics of evolutionary equations. Springer, New York 2002.

  • [39] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.

  • [40] D. Terman, A free boundary problem arising from a bistable reaction–diffusion equation, Siam J.Math. Anal. 14(1983) 1107– 1129. [Crossref]

  • [41] D. Terman, A free boundary arising from a model for nerve conduction, J. Diff. Eqs. 58(3)(1985) 345–363.

  • [42] J. Valero, Attractors of Parabolic Equations Without Uniqueness, Journal of Dynamics and Differential Equations 13(2001) 711–744, doi:10.1023/A:1016642525800. [Crossref]

  • [43] J. Valero, A.V. Kapustyan, On the connectedness and asymptotic behaviour of solutions of reaction–diffusion systems, Journal of Mathematical Analysis and Applications 2006, doi:10.1016/j.jmaa.2005.10.042. [Crossref]

  • [44] M.I. Vishik, S.V. Zelik, V.V. Chepyzhov, Strong Trajectory Attractor for Dissipative Reaction-Diffusion System, DocladyMathematics (2010), doi: 10.1134/S1064562410060086. [Crossref] [Web of Science]

  • [45] N.V. Zadoianchuk, P.O. Kasyanov, Dynamics of solutions of a class of second-order autonomous evolution inclusions, Cybernetics and Systems Analysis 48(2012) 414–428. [Crossref]

  • [46] M.Z. Zgurovsky, P.O. Kasyanov, O.V. Kapustyan, J. Valero, N.V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing III, Springer, Berlin, 2012, doi:10.1007/978-3-642-28512-7. [Crossref]

  • [47] M.Z. Zgurovsky, P.O. Kasyanov, Multivalued dynamics of solutions for autonomous operator differential equations in strongest topologies, Solid Mechanics and its Applications 211(2014) 149–162.

  • [48] M.Z. Zgurovsky, P.O. Kasyanov, N.V. Zadoianchuk, Long-time behavior of solutions for quasilinear hyperbolic hemivariational inequalities with application to piezoelectricity problem, Applied Mathematics Letters 25(2012) 1569–1574, doi: 10.1016/j.aml.2012.01.016. [Web of Science] [Crossref]

About the article

Published Online: 2015-05-25



Citation Information: Nonautonomous Dynamical Systems, ISSN (Online) 2353-0626, DOI: https://doi.org/10.1515/msds-2015-0001. Export Citation

© 2015 Mark O. Gluzman et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in