Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nonautonomous Dynamical Systems

formerly Nonautonomous and Stochastic Dynamical Systems

Editor-in-Chief: Diagana, Toka

Managing Editor: Cánovas, Jose


Mathematical Citation Quotient (MCQ) 2017: 0.71

Open Access
Online
ISSN
2353-0626
See all formats and pricing
More options …

Existence of Solutions of Abstract Nonlinear Mixed Functional Integrodifferential equation with nonlocal conditions

Dr. Machindra B. Dhakne
  • Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431004, Maharashtra, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dr. Poonam S. Bora
  • Corresponding author
  • Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431004, Maharashtra, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-20 | DOI: https://doi.org/10.1515/msds-2017-0001

Abstract

In this paper we discuss the existence of mild and strong solutions of abstract nonlinear mixed functional integrodifferential equation with nonlocal condition by using Sadovskii’s fixed point theorem and theory of fractional power of operators.

Keywords: Sadovskii’s fixed point theorem; mixed functional integrodifferential equation; nonlocal condition

References

  • [1] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), 494-505.Google Scholar

  • [2] L. Byszewski, H. Akca, On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl. Math. Stoc. Anal. 10 (1997), 265-271.Google Scholar

  • [3] L. Byszewski, H. Akca, Existence of solutions of a semilinear functional-differential evolution nonlocal problem. Nonlinear Anal. 34 (1998), 65-72.Google Scholar

  • [4] K. Balachandran, J.Y. Park, Existence of a mild solution of a functional integrodifferential equation with nonlocal condition. Bull. Korean Math.Soc. 38(1) (2001), 175-182.Google Scholar

  • [5] K. Balachandran, R. Sakthivel, Existence of solutions of neutral functional integrodifferential equation in Banach space. Proc. Indian Acad. Sci. Math.Sci. 109 (1999), 325-332.Google Scholar

  • [6] X. Fu, K. Ezzinbi, Existence of solutions for neutral functional differential evolution equations with nonlocal conditions. Nonlinear Anal. 54 (2003), 215-227.Google Scholar

  • [7] E. Hernandez, Existence results for a class of semi-linear evolution equations. Electron. J. Differential Equations. 2001 (2001), 1-14.Google Scholar

  • [8] E. Hernandez, H.R. Henriquez, Existence results for partial neutral functional differential equations with unbounded delay. J. Math. Anal. Appl. 221 (1998), 452-475.Google Scholar

  • [9] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, 1983.Google Scholar

  • [10] D. Qixiang, Zhenbin F., Gang Li, Semilinear differential equations with nonlocal conditions in Banach spaces. International J. Nonlinear Science 2(3) (2006), 131-139.Google Scholar

  • [11] D. Qixiang, Zhenbin F., Gang Li, Existence of solutions to nonlocal neutral functional differential and integrodifferential equations. International J. Nonlinear Science 5(2) (2008), 140-151.Google Scholar

  • [12] B. N. Sadovskii, Fixed point principle. Funct. Anal. Appl. 1(2) (1967), 151-153.Google Scholar

  • [13] X. Xue, Nonlinear differential equations with nonlocal conditions in Banach spaces. Nonlinear Anal. 63 (2005), 575-586.Google Scholar

  • [14] X. Xue, Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces. Elec. J. D. E. 64 (2005), 1-7.Web of ScienceGoogle Scholar

About the article

Received: 2015-12-30

Accepted: 2016-04-27

Published Online: 2017-04-20

Published in Print: 2017-04-25


Citation Information: Nonautonomous Dynamical Systems, Volume 4, Issue 1, Pages 1–15, ISSN (Online) 2353-0626, DOI: https://doi.org/10.1515/msds-2017-0001.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in