Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nonautonomous Dynamical Systems

formerly Nonautonomous and Stochastic Dynamical Systems

Editor-in-Chief: Diagana, Toka

Managing Editor: Cánovas, Jose


Mathematical Citation Quotient (MCQ) 2017: 0.71

Open Access
Online
ISSN
2353-0626
See all formats and pricing
More options …

Functional envelope of a non-autonomous discrete system

Ali Barzanouni
Published Online: 2017-11-14 | DOI: https://doi.org/10.1515/msds-2017-0009

Abstract

Let (X, F = {fn}n =0) be a non-autonomous discrete system by a compact metric space X and continuous maps fn : X → X, n = 0, 1, ....We introduce functional envelope (S(X), G = {Gn}n =0), of (X, F = {fn}n =0), where S(X) is the space of all continuous self maps of X and the map Gn : S(X) → S(X) is defined by Gn(ϕ) = Fn ∘ ϕ, Fn = fn ∘ fn-1 ∘ . . . ∘ f1 ∘ f0. The paper mainly deals with the connection between the properties of a system and the properties of its functional envelope.

Keywords: non-autonomous discrete system; functional envelope; recurrent point

MSC 2010: 37B20; 54H20

References

  • [1] J. Auslander, S. Kolyada and L. Snoha. Functional envelope of a dynamical system. Nonlinearity 20 (2007), no. 9, 2245-2269CrossrefWeb of ScienceGoogle Scholar

  • [2] R. Kempf, “On -limit sets of discrete-time dynamical systems”, Journal of Difference Equations and Applications, 8(2002) no. 12, pp. 1121-1131.Google Scholar

  • [3] S. Kolyada, L. Snoha, and S. Trofimchuk, On minimality of nonautonomous dynamical systems, Nonlinear Oscillations, 7(2004) no. 1, pp. 86-92.Google Scholar

  • [4] S. Kolyada, L. Snoha, Topological entropy of nonautononous dynamical systems, Random Comput. Dyn. 4 (1996) 205-233Google Scholar

  • [5] L. Liu and B. Chen, On !-limit sets and attraction of nonautonomous discrete dynamical systems, Journal of the Korean Mathematical Society, 49(2012) no. 4, pp. 703-713.Google Scholar

  • [6] M. Pourbarat, N. Abbasi. Nonautonomous discrete systems: density of orbits and transitivity. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 25 (2015), no. 5, 1550065, 6 ppGoogle Scholar

  • [7] P. Sharma, A. Nagar, Inducing Sensitiovity on Hyperspaces. Topology and its Applications 157, (2010), 2052-2058.Google Scholar

  • [8] X. Wu, P. Zhu. Chaos in a class of non-autonomous discrete systems. Appl. Math. Lett. 26 (2013), no. 4, 431-436Google Scholar

About the article

Received: 2017-08-18

Accepted: 2017-10-08

Published Online: 2017-11-14

Published in Print: 2017-11-27


Citation Information: Nonautonomous Dynamical Systems, Volume 4, Issue 1, Pages 98–107, ISSN (Online) 2353-0626, DOI: https://doi.org/10.1515/msds-2017-0009.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in