Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nonautonomous Dynamical Systems

formerly Nonautonomous and Stochastic Dynamical Systems

Editor-in-Chief: Diagana, Toka

Managing Editor: Cánovas, Jose

Mathematical Citation Quotient (MCQ) 2018: 0.62

Open Access
See all formats and pricing
More options …

Estimates for Solutions of Differential Equations in a Banach Space via Commutators

Michael Gil’
Published Online: 2018-02-28 | DOI: https://doi.org/10.1515/msds-2018-0001


In a Banach space we consider the equation dx(t)/dt = (A + B(t))×(t) (t ≥ 0), where A is a constant bounded operator, and B(t) is a bounded variable operator.Norm estimates for the solutions of the considered equation are derived in terms of the commutator AB(t) − B(t)A. These estimates give us sharp stability conditions. Our results are new even in the finite dimensional case.We also discuss applications of the obtained results to a class of integro-differential equations.

Keywords: Banach space; differential equation; solution estimates; stability; integro-differential equation

MSC 2010: 34G10; 34D05; 34D20


  • [1] V.M. Aleksandrov and E.V. Kovalenko, Problems in Continuous Mechanics with Mixed Boundary Conditions, Nauka, Moscow 1986. In Russian.Google Scholar

  • [2] J.A.D. Appleby and D.W. Reynolds, On the non-exponential convergence of asymptotically stable solutions of linear scalar Volterra integro-differential equations, Journal of Integral Equations and Applications, 14, no 2 (2002), 521-543.Google Scholar

  • [3] M.C. Cercignani, Mathematical Methods in Kinetic Theory, Macmillian, New York, 1969.Google Scholar

  • [4] Chuhu Jin and Jiaowan Luo, Stability of an integro-differential equation, Computers and Mathematics with Applications, 57 (2009) 1080-1088.Google Scholar

  • [5] Yu L. Daleckii, and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Amer.Math. Soc., Providence, R. I. 1974.Google Scholar

  • [6] J.D. Dollard and Ch. N. Friedman, Product Integration with Applications to Differential Equations. Encyclopedia ofMathematics and its applications; v.10., London, Addison-Wesley Publ. Company, 1979. Google Scholar

  • [7] A. Domoshnitsky and Ya. Goltser, An approach to study bifurcations and stability of integro-differential equations. Math. Comput. Modelling, 36 (2002), 663-678.Google Scholar

  • [8] A.D. Drozdov, Explicit stability conditions for integro-differential equations with periodic coeflcients, Math. Methods Appl. Sci. 21 (1998), 565-588.Google Scholar

  • [9] A.D. Drozdov and M. I. Gil’, Stability of linear integro-differential equations with periodic coeflcients. Quart. Appl. Math. 54 (1996), 609-624.CrossrefGoogle Scholar

  • [10] N.T. Dung, On exponential stability of linear Levin-Nohel integro-differential equations, Journal of Mathematical Physics 56, 022702 (2015); doi:CrossrefGoogle Scholar

  • [11] F.R. Gantmakher, Theory of Matrices. Nauka, Moscow, 1967. In Russian.Google Scholar

  • [12] M.I. Gil’, Operator Functions and Localization of Spectra, Lecture Notes In Mathematics vol. 1830, Springer-Verlag, Berlin, 2003.Google Scholar

  • [13] M.I. Gil’, Spectrum and resolvent of a partial integral operator. Applicable Analysis, 87, no. 5, (2008) 555-566.Web of ScienceGoogle Scholar

  • [14] M.I. Gil’, On stability of linear Barbashin type integro-differential equations, Mathematical Problems in Engineering, 2015, Article ID 962565, (2015), 5 pages.Google Scholar

  • [15] M.I. Gil’, A bound for the Hilbert-Schmidt norm of generalized commutators of nonself-adjoint operators, Operators and Matrices, 11, no. 1 (2017), 115-123Google Scholar

  • [16] Ya. Goltser and A. Domoshnitsky, Bifurcation and stability of integrodifferential equations, Nonlinear Anal. 47 (2001), 953-967.Google Scholar

  • [17] H.G. Kaper, C.G. Lekkerkerker, and J. Hejtmanek, Spectral Methods in Linear Transport Theory, Birkhauser, Basel, 1982.Google Scholar

  • [18] W.J. Rugh, Linear System Theory. Prentice Hall, Upper Saddle River, New Jersey, 1996.Google Scholar

  • [19] H. R. Thieme, A differential-integral equation modelling the dynamics of populations with a rank structure, Lect. Notes Biomath. 68 (1986), 496-511Google Scholar

  • [20] J. Vanualailai and S. Nakagiri, Stability of a system of Volterra integro-differential equations J. Math. Anal. Appl. 281 (2003) 602-619Google Scholar

  • [21] B. Zhang, Construction of Liapunov functionals for linear Volterra integrodifferential equations and stability of delay systems, Electron. J. Qual. Theory Differ. Equ. 30 (2000) 1-17.Google Scholar

About the article

Received: 2017-05-24

Accepted: 2018-01-26

Published Online: 2018-02-28

Citation Information: Nonautonomous Dynamical Systems, Volume 5, Issue 1, Pages 1–7, ISSN (Online) 2353-0626, DOI: https://doi.org/10.1515/msds-2018-0001.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in