Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Materials Science-Poland

4 Issues per year


IMPACT FACTOR 2016: 0.610

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.226
Source Normalized Impact per Paper (SNIP) 2015: 0.431

Open Access
Online
ISSN
2083-134X
See all formats and pricing
More options …

Systematic study on synthesis and purification of double-walled carbon nanotubes synthesized via CVD

A. Jedrzejewska
  • Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322, Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Kalenczuk
  • Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322, Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. Mijowska
  • Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322, Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-05-08 | DOI: https://doi.org/10.2478/s13536-011-0043-3

Abstract

Carbon nanotubes have unique properties, such as thermal and electrical conductance, which could be useful in the fields of aerospace, microelectronics and biotechnology. However, these properties may vary widely depending on the dimensions, uniformity and purity of the nanotube. Nanotube samples typically contain a significant percentage of more allotropes forms of carbon as well as metal particles left over from catalysts used in manufacturing. Purity characterization of double-walled carbon nanotubes (DWCNTs) is an increasingly popular topic in the field of carbon nanotechnology. In this study, DWCNTs were synthesized in a catalytic reaction, using Fe:MgO as catalyst and methane or methane/ethanol as carbon feedstock for chemical vapor deposition (CVD). The addition of ethanol as carbon feedstock allowed to investigate the influence of oxygen on the sample quality. The purification of the as-produced material from the metallic particles and the catalyst support was performed by sonication in an acid solution. The influence of the duration of the acid treatment using ultrasound on the sample purity was investigated, and the optimal value of this parameter was found. Transmission electron microscopy (TEM) images confirmed the removal of impurities and served to elucidate the morphology of the samples. The purity of carbon nanotubes was analyzed using thermal gravimetric analysis (TGA). The Raman spectra of the samples, as a measure of the concentration of defects, were also reported.

Keywords: Chemical vapor deposition (CVD); carbon nanotubes; Raman spectroscopy; high-resolution transmission electron microscopy (HRTEM)

  • [1] IIJIMA S. Nature, 354,6348 (1991), 56–58. http://dx.doi.org/10.1038/354056a0CrossrefGoogle Scholar

  • [2] ANDREWS R. JACQUES D. QIAN D. and DICKEY E.C. Carbon, 39,11 (2001), 1681–1687. http://dx.doi.org/10.1016/S0008-6223(00)00301-8CrossrefGoogle Scholar

  • [3] FRANK S. PONCHARAL P. WANG Z.L. DE HEER WA. Carbon Nanotube Quantum Resistors Science, 280,5370 (1998), 1744–1746. Google Scholar

  • [4] KONG J. ZHOU C. MORPURGO A. SOH HT. QUATE CF. MARCUS C. DAI H. Applied Physics A: Materials Science & Processing, 69,3 (1999), 305–308. http://dx.doi.org/10.1007/s003390051005CrossrefGoogle Scholar

  • [5] LIU C. FAN Y.Y. LIU M. CONG H.T. CHENG H.M. DRESSELHAUS M.S. Science, 286,5442 (1999), 1127–1129. http://dx.doi.org/10.1126/science.286.5442.1127CrossrefGoogle Scholar

  • [6] ANDREWS R. JACQUES D. and RAO A.M. Journal of Physical Chemistry B, 303,5 (1999), 467–474. Google Scholar

  • [7] WU H.Q. WEI X.W. SHAO M.W. GU J.S. QU M.Z. Journal of Materials Chemistry, 12,6 (2002), 1919–1921. http://dx.doi.org/10.1039/b200470dCrossrefGoogle Scholar

  • [8] DAI H. Surface Science, 500 (2002), 218–241. http://dx.doi.org/10.1016/S0039-6028(01)01558-8CrossrefGoogle Scholar

  • [9] QIAN D. DICKEY E.C. ANDREWS R. and RANTELL T. Applied Physics Letters, 76,20 (2000), 2868–2870. http://dx.doi.org/10.1063/1.126500CrossrefGoogle Scholar

  • [10] WAGNER H.D. LOURIE O. FELDMAN Y. and TENNE R. Applied Physics Letters, 72,2 (1998),188–190. http://dx.doi.org/10.1063/1.120680CrossrefGoogle Scholar

  • [11] TANS S.J. VERSHUEREN A.R.M. and DEKKER C. Nature, 393 (1998), 49–52. http://dx.doi.org/10.1038/29954CrossrefGoogle Scholar

  • [12] CHOI H. C. KIM W. WANG D. DAI H. Journal of Physical Chemistry B, 106 (2002), 12361. http://dx.doi.org/10.1021/jp026421fCrossrefGoogle Scholar

  • [13] HUANG W. WANG Y. LUO G. WEI F. Carbon, 41 (2003), 2585–2590. http://dx.doi.org/10.1016/S0008-6223(03)00330-0CrossrefGoogle Scholar

  • [14] CHEUNG C. L. KURTZ A. PARK H. LIEBER C. M. Journal of Physical Chemistry B, 106 (2002), 2429. http://dx.doi.org/10.1021/jp0142278CrossrefGoogle Scholar

  • [15] HYEON T. Chemical Communications, (2003), 927–934. Google Scholar

  • [16] KIM S. W. PARK J. JAMG Y. CHUNG Y. HWAN S. HYEON T. KIM Y. W. Nano Letters, 3 (2003), 1289–1291. http://dx.doi.org/10.1021/nl0343405CrossrefGoogle Scholar

  • [17] YAMADA T. NAMAIL T. HATA K. FUTABA D. N. MIZUNO K. FAN J. YUDASAKA M. YUMURA M. IIJIMA S. Nature Nanotechnology, 1 (2006), 131–136. DOI:10.1038/nnano.2006.95. http://dx.doi.org/10.1038/nnano.2006.95CrossrefGoogle Scholar

  • [18] BANDOWS. HIRAOKA T. YUMURA T. HIRAHARA K. SHINOHARA H. IIJIMA S. Chemical Physics Letters, 384 (2004), 320–325. http://dx.doi.org/10.1016/j.cplett.2003.12.032CrossrefGoogle Scholar

  • [19] QIU H. X. SHI Z. J. GUAN L. H. YOU L. P. GAO M. ZHANG S. L. QIU J. S. GU Z. N. Carbon, 44 (2006), 516. http://dx.doi.org/10.1016/j.carbon.2005.08.021CrossrefGoogle Scholar

  • [20] QIU J. S. WANG Z. Y. ZHAO Z. B. WANG T. H. Fuel, 86 (2007), 282. http://dx.doi.org/10.1016/j.fuel.2006.05.024CrossrefGoogle Scholar

  • [21] YANG Q. H. TONG Y. LIU C. LI F. and CHENG H. M. Carbon, 43 (2005), 2013. http://dx.doi.org/10.1016/j.carbon.2005.01.038CrossrefGoogle Scholar

  • [22] YULIANG A. QINGYI H. Wang J. ZHAOHUI Z. ZHAO H. ZHANG G. Journal of Rare Earths, 28,5 (2010), 717. http://dx.doi.org/10.1016/S1002-0721(09)60187-3CrossrefGoogle Scholar

  • [23] LYU S. C. LEE T. J. YANG C. W. LEE C. J. Chemical Communications, 12 (2003), 1404. http://dx.doi.org/10.1039/b302322bCrossrefGoogle Scholar

  • [24] PAULA Q. ALBERT G. N. DAVID G. UNTO T. JIANG H. TAKU T. KESTAS G. JOSE A. D. ESKO I. K. Carbon, 44 (2006), 1581. http://dx.doi.org/10.1016/j.carbon.2006.01.028CrossrefGoogle Scholar

  • [25] FLAUHAUT E. BACSA R. PEIGNEY A. LAURENT CH. Chemical Communications, (2003), 1442. Google Scholar

  • [26] SHELIMOV K.B. ESENALIEV R.O. and RINZLER A.G. Chemical Physics Letters, 2825 (1998), 429–434. http://dx.doi.org/10.1016/S0009-2614(97)01265-7CrossrefGoogle Scholar

  • [27] SHIMODA H. FLEMING L. and HORTON K. Physica B, 323,1–4 (2002), 135–136. http://dx.doi.org/10.1016/S0921-4526(02)00877-3CrossrefGoogle Scholar

  • [28] YUDASAKA M. ZHANG M. JABS C. IIJIMA S. Applied Physics A, 71,4 (2000), 449–451. http://dx.doi.org/10.1007/s003390000688CrossrefGoogle Scholar

  • [29] SATO Y. OGAWA T. and MOTOMIYA K. Journal of Physical Chemistry B, 105,17 (2001), 3387–3392. http://dx.doi.org/10.1021/jp002817kCrossrefGoogle Scholar

  • [30] CHIANG I.W. BRINSON B.E. and SMALLEY R.E. Journal of Physical Chemistry B, 105,6 (2001), 1157–1161. http://dx.doi.org/10.1021/jp003453zCrossrefGoogle Scholar

  • [31] CHEN X.H. CHEN C.S. and CHEN Q. Materials Letters, 57 (2002), 734–738. http://dx.doi.org/10.1016/S0167-577X(02)00863-7CrossrefGoogle Scholar

  • [32] LAMBERT J.M. AJAYAN P.M. BERNIER P. and PLANEIX J.M. Chemical Physics Letters, 226,3–4 (1994), 364–371. http://dx.doi.org/10.1016/0009-2614(94)00739-XCrossrefGoogle Scholar

  • [33] BACHMATIUK A. BOROWIAK-PALEN E. RÜMMELI M.H. KRAMBERGER C. HÜBERS H.W. GEMMING T. PICHLER T. KALENCZUK R.J. Nanotechnology, 18 (2007), 275610. http://dx.doi.org/10.1088/0957-4484/18/27/275610CrossrefGoogle Scholar

  • [34] STEPLEWSKA A. BOROWIAK-PALEN E. KALENCZUK R.J. Chemical Papers, 64,2 (2010), 255–260. http://dx.doi.org/10.2478/s11696-009-0111-xCrossrefGoogle Scholar

  • [35] HURST K.E. DILLON A.C. KEENAN D.A. and LEHMAN J.H. Chemical Physics Letters, 433,4–6 (2007), 301–304. http://dx.doi.org/10.1016/j.cplett.2006.11.027CrossrefGoogle Scholar

About the article

Published Online: 2012-05-08

Published in Print: 2011-12-01


Citation Information: Materials Science-Poland, ISSN (Online) 2083-124X, ISSN (Print) 2083-1331, DOI: https://doi.org/10.2478/s13536-011-0043-3.

Export Citation

© 2011 Wroclaw University of Technology. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in