Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Materials Science-Poland

4 Issues per year


IMPACT FACTOR 2016: 0.610

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.226
Source Normalized Impact per Paper (SNIP) 2015: 0.431

Open Access
Online
ISSN
2083-134X
See all formats and pricing
More options …

Reactive ion etching of GaN and AlGaN/GaN assisted by Cl2/BCl3

J. Gryglewicz / W. Oleszkiewicz / M. Ramiączek-Krasowska / A. Szyszka / J. Prażmowska / B. Paszkiewicz / R. Paszkiewicz / M. Tłaczała
Published Online: 2012-05-08 | DOI: https://doi.org/10.2478/s13536-011-0045-1

Abstract

This work reports on the latest results of etching of different AlxGa1−x N/GaN heterostructures in relation to percentage composition of aluminum. The etching processes were carried out in a reactive ion etching (RIE) system using the mixture of BCl3/Cl2/Ar. The topography of the heterostructures surfaces and the slope were controlled using atomic force microsopy (AFM) technique. The photoluminescence spectra were used to determine the surface damage and to calculate the Al content in AlGaN/GaN heterostructures commonly used for high electron mobility transistors (HEMTs) fabrication.

Keywords: plasma; RIE; reactive ion etching; Cl2; BCl3; HEMT

  • [1] VITANOV S., PALANKOVSKI V., MAROLDT S., QUAY R., Proceedings of Semiconductor Device Research Symposium IEEE, (2009), 1–2. Google Scholar

  • [2] HUNG S.C. et al., J. Phys. E., 28 (2005), 115. http://dx.doi.org/10.1016/j.physe.2005.02.008CrossrefGoogle Scholar

  • [3] LIN M.E. et al., Appl. Phys. Lett., 64 (1994), 887. http://dx.doi.org/10.1063/1.110985CrossrefGoogle Scholar

  • [4] HUGHES W.C. et al., Mat. Res. Soc. Symp. Proc., 395 (1996), 757. http://dx.doi.org/10.1557/PROC-395-757CrossrefGoogle Scholar

  • [5] BASAK D. et al., Appl. Phys., 38 (1999), 2646. Google Scholar

  • [6] BASAK D., NAKANISHI T. and CitySAKAI S., Solid State Electron., 44 (2000), 725. http://dx.doi.org/10.1016/S0038-1101(99)00303-2CrossrefGoogle Scholar

  • [7] HONG H.F., CHAO C.K., CHYI J.I. and TZENG Y.C., Mater. Chem. Phys., 77 (2002), 412. Google Scholar

  • [8] FENG M.S., GUO J.D., LU Y.M. and CHANG E.Y., Mater. Chem. Phys., 45 (1996), 82. http://dx.doi.org/10.1016/0254-0584(96)80053-8CrossrefGoogle Scholar

  • [9] SMITH S.A. et al., Appl. Phys. Lett., 71 (1999), 3631. http://dx.doi.org/10.1063/1.120463CrossrefGoogle Scholar

  • [10] SHEU J.K. et al., Appl. Phys., 85 (1999), 1970. Google Scholar

  • [11] ZHU K. et al., Appl. Phys. 95 (2004), 4635. Google Scholar

  • [12] CHEUNG R., RONG B., VAN DER DRIFT E. and SLOOF W. G., J. Vac. Sci. Technol. B., 21 (2003), 1268. http://dx.doi.org/10.1116/1.1575249CrossrefGoogle Scholar

  • [13] KIM H.S., YEOM G.Y., LEE J.W. and KIM T.I., J. Vac. Sci. Technol. A., 17 (1999), 2215. Google Scholar

  • [14] SCHUETTE M.L. and LU W., J. Vac. Sci. Technol. B., 25 (2007), 1871. http://dx.doi.org/10.1116/1.2796183CrossrefGoogle Scholar

  • [15] KUYPERS A.D. and HOPMAN H.J., Appl. Phys., 63 (1988), 1970. Google Scholar

  • [16] OLESZKIEWICZ W. et al., Proceedings of Advanced Semiconductor Devices & Microsystems, 8th international conference IEEE, (2010), 49–52. Google Scholar

  • [17] FAN Z., MOHAMMAD S.N., AKTAS O., BOTCHKAREV A.E. and MORKOÇ H., Appl. Phys. Lett., 68 (1996), 1672–1674. http://dx.doi.org/10.1063/1.115901CrossrefGoogle Scholar

About the article

Published Online: 2012-05-08

Published in Print: 2011-12-01


Citation Information: Materials Science-Poland, Volume 29, Issue 4, Pages 260–265, ISSN (Online) 2083-124X, ISSN (Print) 2083-1331, DOI: https://doi.org/10.2478/s13536-011-0045-1.

Export Citation

© 2011 Wroclaw University of Technology. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in