Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Materials Science-Poland

4 Issues per year

IMPACT FACTOR 2016: 0.610

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.226
Source Normalized Impact per Paper (SNIP) 2015: 0.431

Open Access
See all formats and pricing
More options …

Study on etching anisotropy of Si(hkl) planes in solutions with different KOH and isopropyl alcohol concentrations

K. Rola
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372, Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ I. Zubel
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372, Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-05-08 | DOI: https://doi.org/10.2478/s13536-011-0047-z


The paper deals with wet chemical anisotropic etching of Si(hkl) wafers in KOH solutions containing isopropyl alcohol. The impact of KOH and alcohol concentrations on the etch rates of (hkl) planes is shown. The effect of KOH concentration in pure KOH solutions resembles the one in KOH solutions non-saturated with alcohol and is different from the one in KOH solutions saturated with isopropanol. The increase in alcohol concentration in the etching solution generally reduces the etch rates of the selected (hkl) planes. However, when the alcohol concentration reaches the saturation level, the (100) and (311) etch rates increase. This is difficult to explain since the increased alcohol concentration should cause enhanced adsorption of the alcohol molecules on Si surface, as it is suggested by surface tension measurements. Thus, the denser adsorption layer should lead to the etch rate reduction. The influence of isopropanol concentration on the morphology of the (hkl) surfaces is also studied. The increase in the alcohol concentration leads to disappearance of hillocks on (100) and (h11) surfaces.

Keywords: anisotropic etching; silicon surface; potassium hydroxide; isopropanol concentration; (hkl) planes

  • [1] PUERS B. and SANSEN W., Sens. Actuators, A, 23 (1990), 1036. http://dx.doi.org/10.1016/0924-4247(90)87085-WCrossrefGoogle Scholar

  • [2] ZUBEL I. and KRAMKOWSKA M., Sens. Actuators, A, 93 (2001), 138. http://dx.doi.org/10.1016/S0924-4247(01)00648-3CrossrefGoogle Scholar

  • [3] ZUBEL I, Sens. Actuators, A, 94 (2001), 76–86. http://dx.doi.org/10.1016/S0924-4247(01)00690-2CrossrefGoogle Scholar

  • [4] ZUBEL I. and KRAMKOWSKA M., Surf. Sci., 602 (2008), 1712. http://dx.doi.org/10.1016/j.susc.2008.03.010CrossrefGoogle Scholar

  • [5] ROLA K.P. and ZUBEL I., Cent. Eur. J. Phys., 9 (2011), 410. http://dx.doi.org/10.2478/s11534-010-0114-9CrossrefGoogle Scholar

  • [6] HYLTON J.D., BURGERS A.R. and SINKE W.C., J. Electrochem. Soc., 151 (2004), G408. http://dx.doi.org/10.1149/1.1738137CrossrefGoogle Scholar

  • [7] ZUBEL I. and KRAMKOWSKA M., J. Microelectromech. Syst., 16 (2007), 1411. http://dx.doi.org/10.1109/JMEMS.2007.908753CrossrefGoogle Scholar

  • [8] ZUBEL I. and KRAMKOWSKA M., J. Micromech. Microeng., 15 (2005), 485. http://dx.doi.org/10.1088/0960-1317/15/3/008CrossrefGoogle Scholar

  • [9] RESNIK D., VRTACNIK D. and AMON S., J. Micromech. Microeng., 10 (2000), 430. http://dx.doi.org/10.1088/0960-1317/10/3/319CrossrefGoogle Scholar

  • [10] XU Y.W., MICHAEL A. and KWOK C.Y., Sens. Actuators, A, 166 (2011), 164. http://dx.doi.org/10.1016/j.sna.2010.12.018CrossrefGoogle Scholar

  • [11] ZUBEL I. and ROLA K., Opt. Appl., 41 (2011), 423. Google Scholar

  • [12] PAL P., SATO K., GOSALVEZ M.A., KIMURA Y., ISHIBASHI K-I., NIWANO M., HIDA H., BIN TANG and ITOH S., J. Microelectromech. Syst., 18 (2009), 1345. http://dx.doi.org/10.1109/JMEMS.2009.2031688CrossrefGoogle Scholar

  • [13] ZUBEL I. and KRAMKOWSKA M., Acta Phys. Pol., A, 116 (2009), s105. Google Scholar

  • [14] SEIDEL H., CSEPREGI L., HEUBERGER A. and BAUMGÄRTEL H., J. Electrochem. Soc., 137 (1990), 3612. http://dx.doi.org/10.1149/1.2086277CrossrefGoogle Scholar

  • [15] ZUBEL I., ROLA K. and KRAMKOWSKA M., Sens. Actuators, A, 171 (2011), 436. http://dx.doi.org/10.1016/j.sna.2011.09.005CrossrefGoogle Scholar

  • [16] GOSALVEZ M.A., SATO K., FOSTER A.S., NIEMINEN R.M. and TANAKA H., J. Micromech. Microeng., 17 (2007), S1. http://dx.doi.org/10.1088/0960-1317/17/4/S01CrossrefGoogle Scholar

About the article

Published Online: 2012-05-08

Published in Print: 2011-12-01

Citation Information: Materials Science-Poland, Volume 29, Issue 4, Pages 278–284, ISSN (Online) 2083-124X, ISSN (Print) 2083-1331, DOI: https://doi.org/10.2478/s13536-011-0047-z.

Export Citation

© 2011 Wroclaw University of Technology. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

D.V. Yurasov, A.V. Novikov, M.V. Shaleev, N.A. Baidakova, E.E. Morozova, E.V. Skorokhodov, Y. Ota, A. Hombe, Y. Kurokawa, and N. Usami
Materials Science in Semiconductor Processing, 2018, Volume 75, Page 143
N. A. Baidakova, V. A. Verbus, E. E. Morozova, A. V. Novikov, E. V. Skorohodov, M. V. Shaleev, D. V. Yurasov, A. Hombe, Y. Kurokawa, and N. Usami
Semiconductors, 2017, Volume 51, Number 12, Page 1542

Comments (0)

Please log in or register to comment.
Log in