Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Materials Science-Poland

4 Issues per year


IMPACT FACTOR 2016: 0.610

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.226
Source Normalized Impact per Paper (SNIP) 2015: 0.431

Open Access
Online
ISSN
2083-134X
See all formats and pricing
More options …

Graphene synthesis: a Review

S. Saqib Shams
  • Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ruoyu Zhang
  • Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jin Zhu
  • Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-30 | DOI: https://doi.org/10.1515/msp-2015-0079

Abstract

Graphene has achieved a great amount of popularity and interest from the science world because of its extraordinary physical, mechanical and thermal properties. Graphene is an allotrope of carbon, having one-atom-thick planar sheets of sp2 bonded carbon atoms densely packed in a honeycomb crystal lattice. Many methods to synthesize graphene have been developed over a short period and we believe it is necessary to create a list of the most notable approaches. This article focuses on the methods to synthesize graphene in an attempt to summarize and document advancements in the synthesis of graphene research and future prospects.

Keywords: graphene; synthesis; nanomaterials; graphite; 2D; biomass

References

  • [1] GEIM A.K., NOVOSELOV K.S., Nat Mater., 6 (2007), 183.CrossrefGoogle Scholar

  • [2] ALLEN M.J., TUNG V.C., KANER R.B., Chem. Rev., 110 (2009), 132.Google Scholar

  • [3] ENOKI T., SUZUKI M., ENDO M., Graphite Intercalation Compounds and Applications, Oxford University Press, New York, 2003.Google Scholar

  • [4] DELHAES P., Graphite and precursors, CRC Press, Amsterdam, 2001.Google Scholar

  • [5] BOEHM H.P., SETTON R., STUMPP E., Pure. Appl.Chem., 66 (1994), 1893.Google Scholar

  • [6] CASTILLO-MARTINEZ E., CARRETERO-GONZALEZ J., SOVICH J., LIMA M.D., J. Mater. Chem. A, 2 (2014), 221.CrossrefGoogle Scholar

  • [7] PAULING L., The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry, Cornell University Press, Ithaca (NY), 1960.Google Scholar

  • [8] GEIM A.K., Science, 324 (2009), 1530.Google Scholar

  • [9] KOTOV N.A., Nature, 442 (2006), 254.Google Scholar

  • [10] RAO C., BISWAS K., SUBRAHMANYAM K., GOVINDARAJ A., J. Mater. Chem., 19 (2009), 2457.CrossrefGoogle Scholar

  • [11] SOLDANO C., MAHMOOD A., DUJARDIN E., Carbon, 48 (2010), 2127.CrossrefGoogle Scholar

  • [12] KRISHNAMOORTHY K., KIM G.-S., KIM S.J., Ultrason. Sonochem., 20 (2013), 644.CrossrefGoogle Scholar

  • [13] EDWARDS R.S., COLEMAN K.S., Nanoscale, 5 (2013) 38.CrossrefGoogle Scholar

  • [14] WARNER J.H., SCHÄ FFEL F., BACHMATIUK A., RÜMMELI M.H., Graphene: Fundamentals and emergent applications, Elsevier, Oxford, 2012.Google Scholar

  • [15] NOVOSELOV K.S., GEIM A.K., MOROZOV S., JIANG D., ZHANG Y., DUBONOS S., Science, 306 (2004), 666.Google Scholar

  • [16] DATO A., RADMILOVIC V., LEE Z., PHILLIPS J., FRENKLACH M., Nano Lett., 8 (2008), 2012.CrossrefGoogle Scholar

  • [17] REINA A., JIA X., HO J., NEZICH D., SON H., BULOVIC V., Nano Lett., 9 (2008), 30.Google Scholar

  • [18] VERDEJO R., BERNAL M.M., ROMASANTA L.J., LOPEZ-MANCHADO M.A., J. Mater. Chem., 21 (2011), 3301.CrossrefGoogle Scholar

  • [19] PARK S., RUOFF R.S., Nat. Nanotechnol., 4 (2009), 217.CrossrefGoogle Scholar

  • [20] SEGAL M., Nat. Nanotechnol., 4 (2009), 612.CrossrefGoogle Scholar

  • [21] GEIM A.K., MACDONALD A.H., Phys. Today, 60 (8) (2007), 35.CrossrefGoogle Scholar

  • [22] SHENDEROVA O., ZHIRNOV V., BRENNER D., Crit. Rev. Solid State, 27 (2002), 227.CrossrefGoogle Scholar

  • [23] SAKAMOTO J., HEIJST VAN J., LUKIN O., SCHLÜTER A.D., Angew. Chem. Int. Edit., 48 (2009), 1030.CrossrefGoogle Scholar

  • [24] MEYER J.C., GEIM A.K., Nature, 446 (2007), 60.Google Scholar

  • [25] MITTAL G., DHAND V., RHEE K.Y., PARK S.-J., LEE W.R., J. Ind. Eng. Chem., 21 (2015), 11.CrossrefGoogle Scholar

  • [26] NOVOSELOV K., JIANG D., SCHEDIN F., BOOTH T., KHOTKEVICH V., MOROZOV S., P. Natl. Acad. Sci. USA, 102 (2005), 10451.CrossrefGoogle Scholar

  • [27] JAYASENA B., SUBBIAH S., Nanoscale Res Lett., 6 (2011), 95.CrossrefGoogle Scholar

  • [28] PATON K.R., VARRLA E., BACKES C., SMITH R.J., KHAN U., Nat. Mater., 13 (2014), 624.CrossrefGoogle Scholar

  • [29] MCALLISTER M.J., LI J.-L., ADAMSON D.H., SCHNIEPP H.C., ABDALA A.A., LIU J., Chem.Mater., 19 (2007), 4396.CrossrefGoogle Scholar

  • [30] ZHANG Y., LI D., TAN X., ZHANG B., RUAN X., LIU H., Carbon, 54 (2013), 143.CrossrefGoogle Scholar

  • [31] ZHAN D., SUN L., NI Z.H., LIU L., FAN X.F., WANG Y., Adv. Funct. Mater., 20 (2010), 3504.CrossrefGoogle Scholar

  • [32] LEE H., KANG J., CHO M.S., CHOI J.-B., LEE Y., J. Mater. Chem., 21 (2011), 18215.CrossrefGoogle Scholar

  • [33] BRUMFIEL G., Nature, 10 (2009), 1038.Google Scholar

  • [34] JIAO L., ZHANG L., WANG X., DIANKOV G., DAI H., Nature, 458 (2009), 877.Google Scholar

  • [35] KOSYNKIN D.V., HIGGINBOTHAM A.L., SINITSKII A., LOMEDA J.R., DIMIEV A., PRICE B.K., Nature, 458 (2009), 872.Google Scholar

  • [36] CHEN J., CHEN L., ZHANG Z., LI J., WANG L., JIANG W., Carbon, 50 (2012), 1934.CrossrefGoogle Scholar

  • [37] CHOUCAIR M., THORDARSON P., STRIDE J.A., Nat.Nanotechnol., 4 (2008), 30.Google Scholar

  • [38] BISWAL M., BANERJEE A., DEO M., OGALE S., Energ.Environ Sci., 6 (2013), 1249.CrossrefGoogle Scholar

  • [39] CHEN G., WU D., WENG W., WU C., Carbon, 41 (2003), 619.CrossrefGoogle Scholar

  • [40] RAMANATHAN T., STANKOVICH S., DIKIN D., LIU H., SHEN H., NGUYEN S., J. Polym. Sci. Pol. Phys., 45 (2007), 2097.CrossrefGoogle Scholar

  • [41] DREYER D.R., PARK S., BIELAWSKI C.W., RUOFF R.S., Chem. Soc. Rev., 39 (2010), 228.CrossrefGoogle Scholar

  • [42] ESWARAIAH V., ARAVIND S.S.J., RAMAPRABHU S., J. Mater. Chem., 21 (2011), 6800.CrossrefGoogle Scholar

  • [43] DIKIN D.A., STANKOVICH S., ZIMNEY E.J., PINER R.D., Nature, 448 (2007), 457.Google Scholar

  • [44] NAIR R., WU H., JAYARAM P., GRIGORIEVA I., GEIM A., Science, 335 (2012), 442.Google Scholar

  • [45] SHEN B., LU D.D., ZHAI W.T., ZHENG W.G., J.MATER. CHEM. C, 1 (2013), 50.Google Scholar

  • [46] GURUNATHAN S., HAN J.W., EPPAKAYALA V., KIM J.-H., Int. J. Nanomed., 8 (2013), 1015.CrossrefGoogle Scholar

  • [47] PARVEZ K., LI R., PUNIREDD S.R., HERNANDEZ Y., HINKEL F., WANG S., ACS Nano, 7 (2013), 3598.CrossrefGoogle Scholar

  • [48] LU J., YANG J.-X., WANG J., LIM A., WANG S., LOH K.P., ACS Nano, 3 (2009), 2367.CrossrefGoogle Scholar

  • [49] HERNANDEZ Y., NICOLOSI V., LOTYA M., BLIGHE F.M., SUN Z., DE S., Nat. Nanotechnol., 3 (2008), 563.CrossrefGoogle Scholar

  • [50] ALZARI V., NUVOLI D., SCOGNAMILLO S., PICCININI M., GIOFFREDI E., MALUCELLI G., J. Mater. Chem., 21 (2011), 8727.CrossrefGoogle Scholar

  • [51] NUVOLI D., VALENTINI L., ALZARI V., SCOGNAMILLO S., BON S.B., PICCININI M., J. Mater. Chem., 21 (2011), 3428. CrossrefGoogle Scholar

  • [52] ZHOU M., TIAN T., LI X.F., SUN X.D., ZHANG J., CUI P., Int. J. Electrochem. Sc., 9 (2014), 810.Google Scholar

  • [53] LOTYA M., HERNANDEZ Y., KING P.J., SMITH R.J., NICOLOSI V., KARLSSON L.S., J. Am. Chem. Soc., 131 (2009), 3611.CrossrefGoogle Scholar

  • [54] LIU L., ZHAI J., ZHU C., GAO Y., WANG Y., HAN Y., Biosens. Bioelectron., 63 (2015), 483.CrossrefGoogle Scholar

  • [55] XU Y., BAI H., LU G., LI C., SHI G., J. Am. Chem. Soc., 130 (2008), 5856.CrossrefGoogle Scholar

  • [56] HAO R., QIAN W., ZHANG L., HOU Y., Chem. Commun., 48 (2008), 6576.CrossrefGoogle Scholar

  • [57] PATIL A.J., VICKERY J.L., SCOTT T.B., MANN S., Adv. Mater., 21 (2009), 3159.CrossrefGoogle Scholar

  • [58] ENGLERT J.M., RÖHRL J., SCHMIDT C.D., GRAUPNER R., HUNDHAUSEN M., HAUKE F., Adv. Mater., 21 (2009), 4265.CrossrefGoogle Scholar

  • [59] SU Q., PANG S., ALIJANI V., LI C., FENG X., MÜLLEN K., Adv. Mater., 21 (2009), 3191.CrossrefGoogle Scholar

  • [60] WOLTORNIST S.J., OYER A.J., CARRILLO J.-M.Y., DOBRYNIN A.V., ADAMSON D.H., ACS Nano, 7 (2013), 7062.CrossrefGoogle Scholar

  • [61] DENG C., HU H., GE X., HAN C., ZHAO D., SHAO G., Ultrasonics., 18 (2011), 932.Google Scholar

  • [62] PINJARI D.V., PANDIT A.B., Ultrasonics., 18 (2011), 1118.Google Scholar

  • [63] SAFARIFARD V., MORSALI A., Ultrasonics., 19 (2012), 823.Google Scholar

  • [64] RAMADOSS A., KIM S.J., J. Alloy. Compd., 544 (2012), 115.Google Scholar

  • [65] LEE J.K., LEE K., LEE K.I., GAP L.J., IL L.G., Ball-milled graphene nano-powder or ribbon purifying method, involves separating magnetic impurities during stirring suspension using magnet, where impurities are incorporated into graphene powder during ball-milling, Korea Institute of Science and Technology, Seoul, p. 7.Google Scholar

  • [66] LEON V., QUINTANA M., HERRERO M.A., FIERRO J.L.G., HOZ DE LA A., PRATO M., Chem. Commun., 47 (2011), 10936.CrossrefGoogle Scholar

  • [67] LIN T., TANG Y., WANG Y., BI H., LIU Z., HUANG F., Energ. Environ Sci., 6 (2013), 1283.CrossrefGoogle Scholar

  • [68] BORAH M., DAHIYA M., SHARMA S., MATHUR R.B., DHAKATE S.R., Mater. Focus, 3 (2014), 300.CrossrefGoogle Scholar

  • [69] LIU L., XIONG Z., HU D., WU G., CHEN P., Chem. Commun., 49 (2013), 7890.CrossrefGoogle Scholar

  • [70] PAN D., WANG S., ZHAO B., WU M., ZHANG H., WANG Y., Chem. Mater., 21 (2009), 3136.CrossrefGoogle Scholar

  • [71] EL-KADY M.F., STRONG V., DUBIN S., KANER R.B., Science, 335 (2012), 1326.Google Scholar

  • [72] MILLER J.R., Science, 335 (2012), 1312.Google Scholar

  • [73] COTE L.J., CRUZ-SILVA R., HUANG J., J. Am. Chem. Soc., 131 (2009), 11027.CrossrefGoogle Scholar

  • [74] GAO E., WANG W., SHANG M., XU J., Phys. Chem. Chem. Phys., 13 (2011), 2887.CrossrefGoogle Scholar

  • [75] ABDELSAYED V., MOUSSA S., HASSAN H.M., ALURI H.S., COLLINSON M.M., EL-SHALL M.S., J. Phys. Chem. Lett., 1 (2010), 2804. CrossrefGoogle Scholar

  • [76] HUANG L., LIU Y., JI L.-C., XIE Y.-Q., WANG T., SHI W.-Z., Carbon, 49 (2011), 2431.CrossrefGoogle Scholar

  • [77] CHICHKOV B., MOMMA C., NOLTE S., ALVENSLEBEN VON F., TÜNNERMANN A., Appl. Phys. A, 63 (1996), 109.CrossrefGoogle Scholar

  • [78] SOKOLOV D.A., SHEPPERD K.R., ORLANDO T.M., J. Phys. Chem. Lett., 1 (2010), 2633.CrossrefGoogle Scholar

  • [79] TRUSOVAS R., RATAUTAS K., RAČIUKAITIS G., BARKAUSKAS J., STANKEVIČIENĖ I., NIAURA G., Carbon, 52 (2013), 574.CrossrefGoogle Scholar

  • [80] ZHOU Y., BAO Q., VARGHESE B., TANG L.A.L., TAN C.K., SOW C.H., Adv. Mater., 22 (2010), 67.CrossrefGoogle Scholar

  • [81] AMINI S., GARAY J., LIU G., BALANDIN A.A., ABBASCHIAN R., J. Appl. Phys., 108 (2010), 094321.CrossrefGoogle Scholar

  • [82] SUTTER P.W., FLEGE J.-I., SUTTER E.A., Nat. Mater., 7 (2008), 406.CrossrefGoogle Scholar

  • [83] PLETIKOSIĆ I., KRALJ M., PERVAN P., BRAKO R., CORAUX J., N’DIAYE A., Phys. Rev. Lett., 102 (2009), 056808.CrossrefGoogle Scholar

  • [84] WEATHERUP R.S., BAYER B.C., BLUME R., DUCATI C., BAEHTZ C., SCHLÖGL R., Nano Lett., 11 (2011), 4154.CrossrefGoogle Scholar

  • [85] KIM K.S., ZHAO Y., JANG H., LEE S.Y., KIM J.M., KIM K.S., Nature, 457 (2009), 706.Google Scholar

  • [86] ZHANG Y., ZHANG L., ZHOU C., Accounts Chem. Res., 46 (2013), 2329.CrossrefGoogle Scholar

  • [87] BAE S., KIM H., LEE Y., XU X., PARK J.-S., ZHENG Y., Nat. Nanotechnol., 574 (2010), 574.CrossrefGoogle Scholar

  • [88] RAFIEE J., MI X., GULLAPALLI H., THOMAS A.V., YAVARI F., SHI Y., Nat. Mater., 11 (2012), 217.CrossrefGoogle Scholar

  • [89] LENSKI D.R., FUHRER M.S., J. Appl. Phys., 110 (2011), 013720.CrossrefGoogle Scholar

  • [90] LI X., CAI W., AN J., KIM S., NAH J., YANG D., Science, 324 (2009), 1312.Google Scholar

  • [91] LEVENDORF M.P., RUIZ-VARGAS C.S., GARG S., PARK J., Nano Lett., 9 (2009), 4479.CrossrefGoogle Scholar

  • [92] WASSEI J.K., MECKLENBURG M., TORRES J.A., FOWLER J.D., REGAN B., KANER R.B., Small, 8 (2012), 1415.CrossrefGoogle Scholar

  • [93] SUTTER P., Nat. Mater. 8 (2009), 171.CrossrefGoogle Scholar

  • [94] OHTA T., BOSTWICK A., MCCHESNEY J., SEYLLER T., HORN K., ROTENBERG E., Phys. Rev. Lett., 98 (2007), 206802.CrossrefGoogle Scholar

  • [95] MOROZOV S., NOVOSELOV K., KATSNELSON M., SCHEDIN F., PONOMARENKO L., JIANG D., Phys.Rev. Lett., 97 (2006), 016801.CrossrefGoogle Scholar

  • [96] JOBST J., WALDMANN D., SPECK F., HIRNER R., MAUDE D.K., SEYLLER T., http://arxiv.org/abs/0908.1900,2009.Google Scholar

  • [97] SHEN T., GU J., XU M., WU Y., BOLEN M., CAPANO M., Appl. Phys. Lett., 95 (2009), 172105.CrossrefGoogle Scholar

  • [98] WU X., HU Y., RUAN M., MADIOMANANA N.K., HANKINSON J., SPRINKLE M., Appl. Phys. Lett., 95 (2009), 223108.CrossrefGoogle Scholar

  • [99] ALEXANDER-WEBBER J., BAKER A., JANSSEN T., TZALENCHUK A., LARA-AVILA S., KUBATKIN S., Phys. Rev. Lett., 111 (2013), 096601. CrossrefGoogle Scholar

  • [100] TZALENCHUK A., LARA-AVILA S., KALABOUKHOV A., PAOLILLO S., SYVÄ JÄRVI M., YAKIMOVA R., Nat. Nanotechnol., 5 (2010), 186.CrossrefGoogle Scholar

  • [101] LARA-AVILA S., KALABOUKHOV A., PAOLILLO S., SYVÄJÄRVI M., YAKIMOVA R., FAL’KO V., arXiv:09091193, 2009.Google Scholar

  • [102] HASS J., VARCHON F., MILLAN-OTOYA J.-E., SPRINKLE M., SHARMA N., HEER DE W.A., Phys.Rev. Lett., 100 (2008), 125504.CrossrefGoogle Scholar

  • [103] LIN Y.-M., DIMITRAKOPOULOS C., JENKINS K.A., FARMER D.B., CHIU H.-Y., GRILL A., Science, 327 (2010), 662.Google Scholar

  • [104] CHAKRABARTI A., LU J., SKRABUTENAS J.C., XU T., XIAO Z., MAGUIRE J.A., J. Mater. Chem., 21 (2011), 9491.CrossrefGoogle Scholar

  • [105] BLAKE P., BRIMICOMBE P.D., NAIR R.R., BOOTH T.J., JIANG D., SCHEDIN F., Nano Lett., 8 (2008), 1704.CrossrefGoogle Scholar

  • [106] EDA G., FANCHINI G., CHHOWALLA M., Nat. Nanotechnol., 3 (2008), 270.CrossrefGoogle Scholar

  • [107] LI D., MÜLLER M.B., GILJE S., KANER R.B., WALLACE G.G., Nat. Nanotechnol., 3 (2008), 101.CrossrefGoogle Scholar

  • [108] RAHAMAN M., ISMAIL A.F., MUSTAFA A., Polym.Degrad. Stabil., 92 (2007), 1421.CrossrefGoogle Scholar

  • [109] KO Y.U., CHO S.-R., CHOI K.S., PARK Y., KIM S.T., KIM N.H., J. Mater. Chem., 22 (2012), 3606.CrossrefGoogle Scholar

  • [110] YAMAGUCHI H., EDA G., MATTEVI C., KIM H., CHHOWALLA M., ACS Nano., 4 (2010), 524.CrossrefGoogle Scholar

  • [111] NIKOLAEV P., BRONIKOWSKI M.J., BRADLEY R.K., ROHMUND F., COLBERT D.T., SMITH K., Chem. Phys. Lett., 313 (1999), 91.CrossrefGoogle Scholar

  • [112] LIANG F., SADANA A.K., PEERA A., CHATTOPADHYAY J., GU Z., HAUGE R.H., Nano Lett., 4 (2004), 1257.CrossrefGoogle Scholar

  • [113] YAN Z., PENG Z., CASILLAS G., LIN J., XIANG C., ZHOU H., ACS Nano, 8 (2014), 5061.CrossrefGoogle Scholar

  • [114] IRISSOU E., LEGOUX J.-G., RYABININ A., JODOIN B., MOREAU C., J. Therm. Spray Techn., 17 (2008), 495.CrossrefGoogle Scholar

  • [115] WANG X., ZHI L., MÜLLEN K., Nano Lett. 8 (2008), 323.CrossrefGoogle Scholar

  • [116] LIANG X., CHANG A.S.P., ZHANG Y., HARTENECK B.D., CHOO H., OLYNICK D.L., CABRINI S., Nano Lett., 9 (1) (2009), 467.CrossrefGoogle Scholar

  • [117] STANKOVICH S., DIKIN D.A., PINER R.D., KOHLHAAS K.A., KLEINHAMMES A., JIA Y., WU Y., NGUYEN S.T., RUOFF R.S., Carbon, 45 (7) (2007), 1558.CrossrefGoogle Scholar

  • [118] WATCHAROTONE S., DIKIN D.A., STANKOVICH S., PINER R., JUNG I., DOMMETT G.H.B., EVMENENKO G., WU S.-E., CHEN S.-F., LIU CH.,-P., NGUEN S.T., RUOFF R.S., Nano Lett., 7 (7) (2007), 1888.CrossrefGoogle Scholar

  • [119] LI Z., WANG J., LIU X., LIU S., OU J., YANG S.,, J.Mater. Chem., 21 (2011), 3397.CrossrefGoogle Scholar

  • [120] GOMEZ-NAVARRO C., WEITZ R.T., BITTNER A.M., SCOLARI M., MEWS A., BURGHARD M., KERN N., Nano Lett., 7 (11) (2007), 3499. CrossrefGoogle Scholar

  • [121] SHEN H., China’s Graphene industry set to skyrocket in 2014, http://investorintel.com/graphite-grapheneintel/chinas-graphene-industry-starts-take-2014/, 2014. Google Scholar

About the article

Received: 2014-11-17

Accepted: 2015-05-13

Published Online: 2016-08-30

Published in Print: 2015-09-01


Citation Information: Materials Science-Poland, ISSN (Online) 2083-134X, DOI: https://doi.org/10.1515/msp-2015-0079.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Vijay Kumar Das, Zinaida B. Shifrina, and Lyudmila M. Bronstein
Journal of Materials Chemistry A, 2017
[2]
Yufei Han, Kuang Li, Hui Chen, and Jianzhang Li
Polymers, 2017, Volume 9, Number 8, Page 312
[3]
Jan Lehnert, Daniel Spemann, M. Hamza Hatahet, Stephan Mändl, Michael Mensing, Annemarie Finzel, Aron Varga, and Bernd Rauschenbach
Applied Physics Letters, 2017, Volume 110, Number 23, Page 233114
[4]
Hoai T. Nguyen, Lam K. Huynh, and Thanh N. Truong
Carbon, 2017, Volume 121, Page 248

Comments (0)

Please log in or register to comment.
Log in