Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Materials Science-Poland

4 Issues per year

IMPACT FACTOR 2016: 0.610

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.226
Source Normalized Impact per Paper (SNIP) 2015: 0.431

Open Access
See all formats and pricing
More options …

Structural and optical properties of pure and Ag doped ZnO thin films obtained by sol gel spin coating technique

Syed Mansoor Ali / W. A. Farooq / M. R. Baig / M.A. Shar
  • 2Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Atif / S. S. Alghamdi / M. S. Algarawi / Naeem Ur-Rehman
  • National Centre for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Muhammad Hammad Aziz
Published Online: 2016-08-30 | DOI: https://doi.org/10.1515/msp-2015-0091


We have investigated the influence of Ag doping on zinc oxide thin films. Pure and Ag doped, preferentially oriented transparent zinc oxide thin films were prepared by sol gel technique on a glass substrate using diethyl amine as a stabilizer. The X-ray diffraction analysis revealed that the films with hexagonal wurtzite type structure were polycrystalline in nature with a preferred grain orientation in the 101 direction. The crystallite sizes decreased from 34 nm to 27 nm after silver doping. Both photoluminescence and optical transmission measurements showed that the band gap increased after the Ag doping. The structure and optical characterization studies clearly indicated the incorporation of Ag in ZnO. Hence, the observed increase in the optical band gap and decrease in crystallite size can be directly attributed to the effect of Ag ion incorporation into the ZnO lattice.

Keywords: Ag doped ZnO; sol gel; structure properties; optical band gap; defects study


  • [1] KLINGSHIRN C., Phys. Status Solidi B, 71 (1975), 547.CrossrefGoogle Scholar

  • [2] TANG Z.K., WONG G.K.L., YU P., KAWASAKI M., OHTOMO A., KOINUMA H., SEGAWA Y., Appl. Phys. Lett., 72 (1998), 3270.CrossrefGoogle Scholar

  • [3] ZHANG T.C., MEI Z.X., GUO Y., XUE Q.K., DU X.L., J. Phys. D Appl. Phys., 42 (2009), 065303.CrossrefGoogle Scholar

  • [4] SEOW Z.L.S., WONG W.A.S., THAVASI V., JOSE R., RAMAKRISHNA S., HO G.W., Nanotechnology, 20 (2009), 045604.CrossrefGoogle Scholar

  • [5] GUPTA T.K., J. Am. Ceram. Soc., 73 (1990), 1817.CrossrefGoogle Scholar

  • [6] SAITO S., MIYAYAMA M., KOUMOT K., YANAGIDA H., J. Am. Ceram. Soc., 68 (1985), 40.CrossrefGoogle Scholar

  • [7] LI Y.B., BANDO Y., GOLBERG D., Appl. Phys. Lett., 84 (2004) 3603.CrossrefGoogle Scholar

  • [8] CHOOPUN S., TUBTIMTAE A., SANTHAVEESUK T., NILPHAI S., WONGRAT E., HONGSITH N., Appl. Surf. Sci., 256 (2009), 998.CrossrefGoogle Scholar

  • [9] QUARANTA F., VALENTINI A., RIZZI F.R., J. Appl. Phys., 74 (1993), 247.Google Scholar

  • [10] CRACIUM V., ELDERS J., GARDENIERS J.G.E., Appl. Phys. Lett., 65 (1994), 2963.CrossrefGoogle Scholar

  • [11] ONG C.K., WANG S.J., Appl. Surf. Sci., 185 (2001), 47.Google Scholar

  • [12] KUROYANAGI A., Jpn. J. Appl. Phys., 28 (1989), 219.Google Scholar

  • [13] NATSUME Y., SAKATA H., HIRAYAMA T., YANAGIDA H., J. Appl. Phys., 72 (9) (1992), 4203.CrossrefGoogle Scholar

  • [14] FIDDES A.J.C., DUROSE K., BRINKMAN A.W., J. Cryst. Growth, 159 (1996), 210.Google Scholar

  • [15] KAVAK H., TUZEMEN E.S., OZBAYRAKTAR L.N., ESEN R., Vacuum, 83 (2009), 540.Google Scholar

  • [16] OHYAMA M., KOZUKA H., YOKO T., Thin Solid Films, 306 (1997), 78.Google Scholar

  • [17] BAO D., GU H., KUANG A., Thin Solid Films, 312 (1998), 37.Google Scholar

  • [18] HAN H.C., KIM I.J., TAI W.P., KIM J.K., SHIM M.S., SUH S.J., KIM Y.S., J. Korean Ceram. Soc., 40 (2003), 1113.Google Scholar

  • [19] KIM I.J., HAN H.C., LEE C.S., SONG Y.J., TAI W.P., SUH S.J., KIM Y.S., J. Korean Ceram. Soc., 41 (2004), 136.Google Scholar

  • [20] WANG Y., CHU B., Superlattice. Microst., 44 (2008), 54.CrossrefGoogle Scholar

  • [21] HENGLEIN A., J. Phys. Chem., 97 (1993), 5457.CrossrefGoogle Scholar

  • [22] RANI S., SURI P., SHISHODIA P.K., MEHRA R.M., Sol. Energ. Mat. Sol. C., 92 (2008), 1639.CrossrefGoogle Scholar

  • [23] WANG X.S., WU Z.C., WEBB J.F., LIU Z.G., Appl. Phys. A-Mater., 77 (2003), 561.CrossrefGoogle Scholar

  • [24] EL-KADRY N., ASHOUR A., MAHMOUD S.A., Thin Solid Films, 269 (1995), 112.Google Scholar

  • [25] BARRET C.S., MASSALSKI T.B., Structure of Metals, Pergamon Press, Oxford, 1980.Google Scholar

  • [26] BAHSI Z.B, ORAL A.Y., Opt. Mater., 29 (2007), 672.CrossrefGoogle Scholar

  • [27] NISHINO J., OHSHIO S., KAMATA K., J. Am. Ceram. Soc., 75 (1992), 3469.CrossrefGoogle Scholar

  • [28] SERPONE N., LAWLESS D., KHAIRUTDINOV R., J. Phys. Chem., 99 (1995), 16646.CrossrefGoogle Scholar

  • [29] SERNELIUS B.E., BERGGREN K.F., JIM Z.C., HAMBERG I., GRANQVIST C.G., Phys. Rev. B, 37 (1988), 10244.Google Scholar

  • [30] WU Q.H., SONG J., KANG J., DONG Q.F., WU S.T., SUN S.G., Mater. Lett., 61 (2007), 3679.CrossrefGoogle Scholar

  • Google Scholar

About the article

Received: 2014-12-31

Accepted: 2015-06-12

Published Online: 2016-08-30

Published in Print: 2015-09-01

Citation Information: Materials Science-Poland, Volume 33, Issue 3, Pages 601–605, ISSN (Online) 2083-134X, DOI: https://doi.org/10.1515/msp-2015-0091.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in