Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Materials Science-Poland

4 Issues per year


IMPACT FACTOR 2016: 0.610

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.226
Source Normalized Impact per Paper (SNIP) 2015: 0.431

Open Access
Online
ISSN
2083-134X
See all formats and pricing
More options …

Impact of incorporation of chromium on electrochemical properties of LiFePO4/C for Li-ion batteries

Amol Naik
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jian Zhou
  • Corresponding author
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chao Gao
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guizhen Liu
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lin Wang
  • Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-06 | DOI: https://doi.org/10.1515/msp-2015-0087

Abstract

LiFe0.95Cr0.05PO4/C was successfully synthesized by one-step solid-state reaction using a single mode microwave reactor. The effect of incorporation of chromium on LiFePO4 lattice parameters was systematically investigated by X-ray diffraction. Surface analysis was done by scanning electron microscopy and transmission electron microscopy. The ratio of amorphous to graphitic carbon was determined from Raman spectroscopic data. The influence of chromium incorporation on electrochemical properties was studied by recording charge/discharge cycles combined with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. It was found that Cr incorporation significantly enhanced the electrochemical performance of LiFePO4 at all current densities up to 10 C. LiFe0.95Cr0.05PO4/C prepared exhibited the best performance with an initial specific discharge capacity of 157.7, 144.8, 138.3, 131.0, 124.1 and 111.1 mAh·g−1 at 0.1 C, 0.5 C, 1.0 C, 2.0 C, 5 C and 10 C, respectively. The doped sample displayed excellent capacity retention, which was substantially superior than that of pristine LiFePO4/C at a higher current rate.

Keywords: one step solid state reaction; chromium incorporation; LiFe0.95Cr0.05PO4/C; higher current densities

References

  • [1] Venugopal G., Hunt A., Alamgir F., Mat. Matter., 5 (2010), 42.Google Scholar

  • [2] Bruce P.G., Scrosati B., Tarascon J.M., Angew. Chem. Int. Edit., 47 (2008), 2930.Google Scholar

  • [3] Padhi A.K., Nanjundaswamy K.S., Masquelier C., Goodenough J.B., J. Electrochem. Soc., 14 (1997), 2581.CrossrefGoogle Scholar

  • [4] Whittingham M.S., Song Y., Lutta S., Anderson A.S., Thomas J.O., J. Power Sources, 108 (2002), 8.Google Scholar

  • [5] Zaghib K., Striebel K., Gueli A., Shim J., Armand M., Gauthier M., Electrochim. Acta, 50 (2004), 263.Google Scholar

  • [6] Yun N.J., Ha H.W., Jeong K.H., Park H.Y., Kim K., J. Power Sources, 160 (2006), 1361.Google Scholar

  • [7] Gabrisch H., Wilcox J.D., Doeff M.M., Electrochem. Solid. St. Lett., 9 (7) (2006), A360.CrossrefGoogle Scholar

  • [8] Chung S.Y., Bloking J.T., Chiang Y.M., Nat. Mater., 1 (2002), 123.Google Scholar

  • [9] Yamada A., Chung S.C., Hinikuma K., J. Electrochem. Soc., 148 (2001), A224.Google Scholar

  • [10] Gibot P., Cabanas M.C., Laffont L., Levasseur S., Carlach P., Hamelet S., Tarascon J.M., Masquelier C., Nat. Mater., 7 (2008), 741.Google Scholar

  • [11] Zavalij P.Y., Chernova N.A., J. Mater. Chem., 15 (2005), 3362.CrossrefGoogle Scholar

  • [12] Xu X., Wen Z., Gu Z., Xu X., Lin Z., Electrochem. Commun., 6 (2004), 1233.Google Scholar

  • [13] Delmas C., Viala J.C., Olazcuaga R., Flem G.L., Hagenmuller P., Mater. Res. Bull., 16 (1981), 83.CrossrefGoogle Scholar

  • [14] Sigaryov S.E., Mater. Sci. Eng. B-Adv., 13 (1992), 117.CrossrefGoogle Scholar

  • [15] Ying J.R., Lei M., Jiang C.Y., Wan C.R., He X.M., Li J.J., Wang L., Ren J.G., J. Power Sources., 158 (2006), 543.Google Scholar

  • [16] Park C.K., Park S.B., Shin H.C., Cho W.I., Jang H., B. Korean Chem. Soc., 32 (1) (2011), 191.CrossrefGoogle Scholar

  • [17] Naik A., Zhou J., Gao C., Wang L., Electrochim. Acta, 214 (2014), 215.Google Scholar

  • [18] Feng Y., Mater. Chem. Phys., 121 (2010), 302.Google Scholar

  • [19] Mi C.H., Zhang X.G., Zhao X.B., Li H.L., Mater. Sci. Eng. B-Adv., 129 (2006), 8.Google Scholar

  • [20] Dominko R., Goupil J.M., Bele M., Gaberscek M., Remskar M., Hanzel D., J. Electrochem. Soc., 152 (2005), A858.Google Scholar

  • [21] Xu J., Chen G., Xie C., Li X., Zhou Y., Solid State Commun., 147 (2008), 44.Google Scholar

  • [22] Bhuvaneswari M.S., Bramnik N.N., Ensling D., Ehrenberg H., Jaegermann W., J. Power Sources, 180 (2008), 553.Google Scholar

  • [23] Li B., Chen Y., Wang H., Liang W., Liu G., Ren W., Li C., Liu Z., Rao G., Jinc C., Zhang Z., Chem. Commun., 50 (2014),799.Google Scholar

  • [24] Markevich E., Sharabi R., Haiket O., J. Power Sources, 196 (2011), 6433.Google Scholar

  • [25] Lu Z.G., Lo M.F., Cheng C.Y., J. Phys. Chem. C, 112 (2008), 7069.Google Scholar

  • [26] Park K.C., Hayashi T., Tomiyasu H., Dresselhaus M.S., J. Mater. Chem., 15 (2005), 407.CrossrefGoogle Scholar

  • [27] Padhi A.K., Nanjundaswamy K.S., Masquelier C., Goodenough J.B., J. Electrochem. Soc., 144 (1997), 1188.Google Scholar

  • [28] Wang Y.Q., Wang J.L., Yang J., Nuli Y., Adv. Funct. Mater., 16 (2006), 2135.CrossrefGoogle Scholar

  • [29] Meethong N., Kao Y.H., Speakman S.A., Chiang Y.M., Adv. Funct. Mater., 19 (2009), 1060.CrossrefGoogle Scholar

  • [30] Hauffe K., Oxidation of Metals, Plenum Press, New York, 1965.Google Scholar

  • [31] Shin H.C., Park S.B., Jang H., Electrochim. Acta, 53 (2008), 7946.Google Scholar

  • [32] Gao F., Tang Z.Y., Electrochim. Acta, 53 (2008), 5071.Google Scholar

  • [33] Shin H.C., Cho W.I., Jang H., Electrochim. Acta, 52 (2006), 1472.Google Scholar

About the article

Received: 2014-12-09

Accepted: 2015-05-26

Published Online: 2016-01-06

Published in Print: 2015-12-01


Citation Information: Materials Science-Poland, ISSN (Online) 2083-134X, DOI: https://doi.org/10.1515/msp-2015-0087.

Export Citation

© 2015 Amol Naik et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xiujuan Chen, Xi Peng, Penglin Zhang, and Bingxue Sun
Research on Chemical Intermediates, 2017

Comments (0)

Please log in or register to comment.
Log in