Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Materials Science-Poland

4 Issues per year


IMPACT FACTOR 2016: 0.610

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.226
Source Normalized Impact per Paper (SNIP) 2015: 0.431

Open Access
Online
ISSN
2083-134X
See all formats and pricing
More options …

Structural and electrical properties of barium titanate (BaTiO3) thin films obtained by spray pyrolysis method

S.S. Kumbhar
  • Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M.A. Mahadik
  • Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P.K. Chougule
  • Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V.S. Mohite
  • Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Y.M. Hunge
  • Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K.Y. Rajpure
  • Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A.V. Moholkar
  • Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C.H. Bhosale
  • Corresponding author
  • Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-06 | DOI: https://doi.org/10.1515/msp-2015-0107

Abstract

Barium titanate (BaTiO3) thin films have been prepared using the spray pyrolysis method. The films were deposited onto a glass substrate at varying substrate temperature ranging from 250 to 350 °C with the interval of 50 °C. The structural, morphological, electrical and dielectric properties of the deposited films have been studied. The X-ray diffraction pattern confirmed the polycrystalline nature of the films with a cubic crystal structure. X-ray photoelectron spectroscopy (XPS) showed a good agreement of the thin films stoichiometry with BaTiO3. A presence of Ba, Ti and O in the BaTiO3 thin films was observed by energy dispersive X-ray analysis. The scanning electron microscopy (SEM) showed the heterogeneous distribution of cubical grains all over the substrate. The grain size decreased with an increase in substrate temperature. The dielectric constant and dielectric loss showed the dispersion behaviour as a function of frequency, measured in the frequency range of 20 Hz to 1 MHz. The AC conductivity (σac) measurement showed the linear nature of obtained films, which confirms conduction mechanism due to small polarons. Impedance spectroscopy has been used to study the electrical behaviour of BaTiO3 ferroelectric thin films. The ferroelectric hysteresis loop has been recorded at room temperature.

Keywords: BaTiO3 thin films; structural properties; dielectric properties

References

  • [1] Jomni F., Gonon P., Kamel F.E., Yangui B., Integr. Ferroelectr., 97 (2008), 121.Google Scholar

  • [2] Zhu W., Wang C.C., Akbar S.A., Asiaie R., J. Mater. Sci., 32 (1997), 4303.CrossrefGoogle Scholar

  • [3] Kim S., Kwon O.Y., J. Mater. Sci., 34 (1999), 707.CrossrefGoogle Scholar

  • [4] Wei Z., Noda M., Integr. Ferroelectr., 52 (2010), 111.Google Scholar

  • [5] Luo W.B., Zhu J., Integr. Ferroelectr., 406 (2010), 56.Google Scholar

  • [6] Osumi T., Nishide M., Integr. Ferroelectr., 133 (2012), 42.Google Scholar

  • [7] Xu T., Wang J., Shimada T., J. Phys.-Condens. Mat., 25 (2013), 415901.CrossrefGoogle Scholar

  • [8] Han X.Q., Kam C.H., Integr. Ferroelectr., 33 (2001), 221.CrossrefGoogle Scholar

  • [9] Suzuki T., Nishi Y., Fujimoto M., Philos. Mag. A, 79 (1999), 2461.Google Scholar

  • [10] Pontes F.M., Pinheiro C.D., J. Lumin., 104 (2003), 175.Google Scholar

  • [11] Yokota K., Morigou H., Miyashita F., Nucl. Instrum. Meth. B, 257 (2007), 468.Google Scholar

  • [12] Misra M., Kotani K., Appl. Surf. Sci., 237 (2004), 421.Google Scholar

  • [13] Silvan M.M., Cobas L.F., Palma R.J.M., Velez M.H., Duart J.M.M., Surf. Coat. Tech., 151 (2002), 118.Google Scholar

  • [14] Hsi C.S., Shiao F.Y., Wu N.C., Wang M.C., Solid State Commun., 125 (2003), 633.Google Scholar

  • [15] Tan C.K., Goh G.K.L., Lau G.K., Thin Solid Films, 516 (2008), 5545.Google Scholar

  • [16] Kumari S., Tripathi C., Singh A.P., Chauhan D., Shrivastav R., Dass S., Satsangi V.R., Curr. Sci. India, 91 (2006), 1062.Google Scholar

  • [17] Panda B., Dhar A., Nigam G.D., Bhattacharya D., Ray S. K., Thin Solid Films, 332 (1998), 46.Google Scholar

  • [18] Wang J., Wan H., Lin Q., Mater. Sci. Tech.-Lond., 14 (2003), 172.Google Scholar

  • [19] James A.R., Prakash C., Prasad G., J. Phys. D Appl. Phys., 39 (2006), 1635.CrossrefGoogle Scholar

  • [20] Qiao L., Bi X., J. Phys. D Appl. Phys., 42 (2009), 1755081.Google Scholar

  • [21] Golego N., Studenikin S.A., Cocivera M., Chem. Mater., 10 (1998), 2000.CrossrefGoogle Scholar

  • [22] Shinde P.S., Sadale S.B., Sol. Energ. Mat. Sol. C., 92 (2008), 283.CrossrefGoogle Scholar

  • [23] ShindE S.S., Bhosale C.H., J. Photoch. Photobio. B, 120 (2013), 1.Google Scholar

  • [24] Mahadik M.A., Shinde S.S., Mater. Res. Bull., 48 (2013), 4058.CrossrefGoogle Scholar

  • [25] Sapkal R.T., Shinde S.S., J. Photoch. Photobio. B, 110 (2012), 15.Google Scholar

  • [26] Zarate R.A., Cabrera A.L., J. Phys. Chem. Solids, 59 (1998), 1639.Google Scholar

  • [27] Tripathi A.K., Chariar V., Goel T.C., Pillai P.K.C., Mater. Sci. Eng. B-Adv., 25 (1994), 34.CrossrefGoogle Scholar

  • [28] Hwang U.Y., Park H.S., Koo K.K., Ind. Eng. Chem. Res., 43 (2004), 728.CrossrefGoogle Scholar

  • [29] Phule P.P., Risbud S.H., Mater. Sci. Eng. B-Adv., 3 (1989), 241.CrossrefGoogle Scholar

  • [30] Hong H., Meng H., Kun Z., Fang T., Bin L., Juan J., Hao C., Liang Z., Qi L., Zhen Y., Chinese Phys. Lett., 22 (2005), 2950.CrossrefGoogle Scholar

  • [31] Lv H., Ma L., Zeng P., Ke D., Peng T., J. Mater. Chem., 20 (2010), 3665.CrossrefGoogle Scholar

  • [32] Lee S., Kang K.Y., Han S.K., Appl. Phys. Let., 75 (1999), 1784.Google Scholar

  • [33] Kanamadi C.M., Kulkarni S.R., Mater. Chem. Phys., 116 (2009), 6.Google Scholar

  • [34] Bammannavar B.K., Naik L.R., Chougule B.K., J. Appl. Phys., 104 (2008), 0641231.Google Scholar

  • [35] Wu J., Wang J., J. Appl. Phys., 110 (2011), 064104.Google Scholar

  • [36] Patil D.R., Lokare S.A., Mater. Chem. Phys., 104 (2007), 254.Google Scholar

  • [37] Dubey A.K., Singh P., Singh S., Kumar D., Parkash O., J. Alloy. Compd., 509 (2011), 3899.Google Scholar

  • [38] Jo J.Y., Kim Y.S., Kim D.H., Kim J.D., Chang Y.J., Kong J.H., Park Y.D., Song T.K., Yoon J.G., Jung J.S., Noh T.W., Thin Solid Films, 486 (2005), 149.Google Scholar

  • [39] Vijatovic M.M., Bobic J.D., Stojanovic B.D., Sci. Sinter., 40 (2008), 155.CrossrefGoogle Scholar

About the article

Received: 2015-03-07

Accepted: 2015-09-07

Published Online: 2016-01-06

Published in Print: 2015-12-01


Citation Information: Materials Science-Poland, ISSN (Online) 2083-134X, DOI: https://doi.org/10.1515/msp-2015-0107.

Export Citation

© 2015 S.S. Kumbhar et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in