Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Materials Science-Poland

4 Issues per year


IMPACT FACTOR 2016: 0.610

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.226
Source Normalized Impact per Paper (SNIP) 2015: 0.431

Open Access
Online
ISSN
2083-134X
See all formats and pricing
More options …

Enhanced thermal conductivity of graphene nanoplatelets epoxy composites

Lukasz Jarosinski
  • Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrzej Rybak / Karolina Gaska
  • Corresponding author
  • Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
  • Department of Materials and Manufacturing Technology, High Voltage Engineering Division, Chalmers University of Technology, Gothenburg, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grzegorz Kmita / Renata Porebska / Czeslaw Kapusta
  • Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-26 | DOI: https://doi.org/10.1515/msp-2017-0028

Abstract

Efficient heat dissipation from modern electronic devices is a key issue for their proper performance. An important role in the assembly of electronic devices is played by polymers, due to their simple application and easiness of processing. The thermal conductivity of pure polymers is relatively low and addition of thermally conductive particles into polymer matrix is the method to enhance the overall thermal conductivity of the composite. The aim of the presented work is to examine a possibility of increasing the thermal conductivity of the filled epoxy resin systems, applicable for electrical insulation, by the use of composites filled with graphene nanoplatelets. It is remarkable that the addition of only 4 wt.% of graphene could lead to 132 % increase in thermal conductivity. In this study, several new aspects of graphene composites such as sedimentation effects or temperature dependence of thermal conductivity have been presented. The thermal conductivity results were also compared with the newest model. The obtained results show potential for application of the graphene nanocomposites for electrical insulation with enhanced thermal conductivity. This paper also presents and discusses the unique temperature dependencies of thermal conductivity in a wide temperature range, significant for full understanding thermal transport mechanisms.

Keywords: graphene nanoplatelets; thermal conductivity; electrical resistivity; epoxy resin; high-shear exfoliation

References

  • [1] BALANDIN A., Nat. Mater., 10 (2011), 569.Google Scholar

  • [2] NOVOSELOV K.S., GEIM A.K., MOROZOV S.V., JIANG D., ZHANG Y., DUBONOS S.V., GRIGORIEVA I.V., FIRSOV A.A., Science, 306 (2004), 666.Google Scholar

  • [3] SARTRE V., LALLEMAND M., Appl. Therm. Eng., 21 (2001), 221.Google Scholar

  • [4] QIAN R., YU J., WU C., ZHAI X., JIANG P., RSC Adv., 3 (2013), 17373.Google Scholar

  • [5] CHATTERJEE S., NAFEZAREFI F., TAI N.H., SCHLAGENHAUF L., N¨UESCH F.A., CHU B.T.T., Carbon, 50 (2012), 5380.Google Scholar

  • [6] GASKA K., RYBAK A., KAPUSTA C., SEKULA R., SIWEK A., Polym. Advan. Technol., 26 (2015), 26.Google Scholar

  • [7] SHAHIL K.M.F., BALANDIN A.A., Nano Lett., 12 (2012), 861.CrossrefGoogle Scholar

  • [8] KING J.A., VIA M.D., MORRISON F.A., WIESE K.R., BEACH E.A., CIESLINSKI M.J., BOGUCKI G.R., J. Compos. Mater., 46 (2012), 1029.Google Scholar

  • [9] ZHAI W., SHI X., WANG M., XU Z., YAO J., SONG S., WANG Y., ZHANG Q., J. Compos. Mater., 48 (2014), 3727.CrossrefGoogle Scholar

  • [10] CHU K., JIA C., LI W., Appl. Phys. Lett., 101 (2012), 121916.Google Scholar

  • [11] SONG S., PARK K., KIM B., CHOI Y., JUN G., LEE D., KONG B., PAIK K., JEON S., Adv. Mater., 25 (2013), 732.Google Scholar

  • [12] WANG Y., YU J., DAI W., SONG Y., WANG D., ZENG L., JIANG N., Polym. Composite., 36 (2015), 556.Google Scholar

  • [13] KAUSAR A., ANWAR Z., MUHAMMAD B., Polym.- Plast. Technol. Eng, 55 (2016), 1192.Google Scholar

  • [14] YU A., RAMESH P., ITKIS M.E., BEKYAROVA E., HADDON R.C., J. Phys. Chem. C, 111 (2007), 7565.Google Scholar

  • [15] WEI J., VO T., INAM F., RSC Adv., 5 (2015), 73510.Google Scholar

  • [16] WANG F., DRZAL L.T., QIN Y., HUANG Z., J. Mater. Sci., 50 (2015), 1082.Google Scholar

  • [17] CHATTERJEE S., WANG J.W., KUO W.S., TAI N.H., SALZMANN C., LI W.L., HOLLERTZ R., N¨UESCH F.A., CHU B.T.T., Chem. Phys. Lett., 531 (2012), 6.Google Scholar

  • [18] BALANDIN A.A., GHOSH S., BAO W., CALIZO I., TEWELDEBRHAN D., MIAO F., LAU C.N., Nano Lett., 8 (2008), 902.Google Scholar

  • [19] NIKA D., POKATILOV E., ASKEROV A., BALANDIN A., Phys. Rev. B, 79 (2009), 155413.Google Scholar

  • [20] GHOSH S., BAO W., NIKA D.L., SUBRINA S., POKTILOV E.P., LAU C.N., BALANDIN A.A., Nat. Mater., 9 (2010), 555.CrossrefGoogle Scholar

  • [21] PATON K.R., VARRLA E., BACKES C., SMITH R.J., KHAN U., O’NEILL A., BOLAND C., LOTYA M., ISTRATE O.M., KING P., HIGGINS T., BARWICH S., MAY P., PUCZKARSKI P., AHMED I., MOEBIUS M., PETTERSSON H., LONG E., COELHO J., O’BRIEN S.E., MCGUIRE E.K., SANCHEZ B.M., DUESBERG G.S., MCEVOY N., PENNYCOOK T.J., DOWNING C., CROSSLEY A., NICOLOSI V., COLEMAN J.N., Nat. Mater., 13 (2014), 624.CrossrefGoogle Scholar

  • [22] YI M., SHEN Z., J. Mater. Chem. A, 3 (2015), 11700.Google Scholar

  • [23] LIU L., SHEN Z., YI M., ZHANG X., MA S., RSC Adv., 4 (2014), 36464.Google Scholar

  • [24] SONG N., JIA J., WANG W., GAO Y., ZHAO Y., CHEN Y., Chem. Eng. J., 298 (2016), 198.Google Scholar

  • [25] WANG S., TAMBRAPARNI M., QIU J., TIPTON J., DEAN D., Macromolecules, 42 (2009), 5251.CrossrefGoogle Scholar

  • [26] PARK W., HU J., JAUREGUI L.A., RUAN X., CHEN Y.P., Appl. Phys. Lett., 104 (2014), 113101.Google Scholar

  • [27] RAMIREZ C., FIGUEIREDO F.M., MIRANZO P., POZA P., OSENDI M.I., Carbon, 50 (2012), 3607.Google Scholar

  • [28] GU J., XIE C., LI H., DANG J., GENG W., ZHANG Q., Polym. Composite, 35 (2013), 1087.Google Scholar

  • [29] SUN Y.-H., XIONG W.-H., LI C.-H., T. Nonferr. Metal. Soc., 20 (2010), 624.Google Scholar

  • [30] CHOI S., KIM J., Compos. Part B-Eng., 51 (2013), 140CrossrefGoogle Scholar

About the article

Received: 2016-10-04

Accepted: 2017-01-16

Published Online: 2017-07-26

Published in Print: 2017-07-26


Citation Information: Materials Science-Poland, ISSN (Online) 2083-134X, DOI: https://doi.org/10.1515/msp-2017-0028.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in