Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Measurement Science Review

The Journal of Institute of Measurement Science of Slovak Academy of Sciences

6 Issues per year


IMPACT FACTOR 2016: 1.344

CiteScore 2016: 1.88

SCImago Journal Rank (SJR) 2015: 0.415
Source Normalized Impact per Paper (SNIP) 2015: 1.200

Open Access
Online
ISSN
1335-8871
See all formats and pricing
In This Section
Volume 10, Issue 5 (Jan 2010)

Issues

Measurement of nanopatterned surfaces by real and reciprocal space techniques

P. Siffalovic
  • Institute of Physics SAS, Dubravska cesta 9, 84511 Bratislava, Slovakia
/ K. Vegso
  • Institute of Physics SAS, Dubravska cesta 9, 84511 Bratislava, Slovakia
/ M. Jergel
  • Institute of Physics SAS, Dubravska cesta 9, 84511 Bratislava, Slovakia
/ E. Majkova
  • Institute of Physics SAS, Dubravska cesta 9, 84511 Bratislava, Slovakia
/ J. Keckes
  • Erich Schmid Institute for Materials Science, Jahnstr. 12, A-8700 Leoben, Austria
/ G. Maier
  • Materials Center Leoben Forschung GmbH, Roseggerstr. 12, A-8700 Leoben, Austria
/ M. Cornejo
  • Leibniz-Institut für Oberflächenmodifizierung e. V., 04318 Leipzig, Germany
/ B. Ziberi
  • Leibniz-Institut für Oberflächenmodifizierung e. V., 04318 Leipzig, Germany
/ F. Frost
  • Leibniz-Institut für Oberflächenmodifizierung e. V., 04318 Leipzig, Germany
/ B. Hasse
  • Incoatec GmbH, Max-Planck-Str. 2, 21502 Geesthacht, Germany
/ J. Wiesmann
  • Incoatec GmbH, Max-Planck-Str. 2, 21502 Geesthacht, Germany
Published Online: 2010-12-21 | DOI: https://doi.org/10.2478/v10048-010-0027-1

Measurement of nanopatterned surfaces by real and reciprocal space techniques

A newly developed laboratory grazing-incidence small-angle X-ray scattering GISAXS system capable of statistical measurements of surface morphology at the nanometer scale was developed. The potential of the GISAXS system is compared to the AFM technique for a nanopatterned silicon surface produced by ion-beam erosion. The characteristic period of the ion-beam induced ripples and their lateral correlation length were estimated from AFM. Using GISAXS the reciprocal space map of surface morphology was measured and analyzed. The two microfocus X-ray sources emitting radiation at the Cu-Kα and Cr-Kα were used. The lateral periods of ripples obtained by the reciprocal space mapping techniques match the results of real space techniques. The setup has the potential to monitor and control the deposition process and formation of nanostructures with sufficient temporal and spatial resolution.

Keywords: AFM; GISAXS; nanostructures; ion-beam sputtering

  • Ziberi, B., Frost, F., Hoche, T., Rauschenbach, B. (2005). Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: Experiment and theory. Phys. Rev. B 72, 235310.

  • Carbone, D., Biermanns, A., Ziberi, B., Frost, F., Plantevin, O., Pietsch, U., Metzger, T. H. (2009). Ion-induced nanopatterns on semiconductor surfaces investigated by grazing incidence x-ray scattering techniques. J. Phys.-Condens. Mat. 21, 224007. [Web of Science]

  • Ziberi, B., Cornejo, M., Frost, F., Rauschenbach, B. (2009). Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering. J. Phys.-Condens. Mat. 21, 224003. [Web of Science]

  • Bennett, J. M., Mattsson, L. (1989). Introduction to Surface Roughness and Scattering. Washington, D. C.: Optical Society of America.

  • Guinier, A. (1963). X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. San Francisco: W. H. Freeman.

  • Dullens, R. P. A., Petukhov, A. V. (2007). Second-type disorder in colloidal crystals. Epl.-Europhys. Lett. 77, 58003. [Web of Science]

  • Petukhov, A. V., Thijssen, J. H. J., ‘t Hart, D. C., Imhof, A., van Blaaderen, A., Dolbnya, I. P., Snigirev, A., Moussaid, A., Snigireva, I. (2006). Microradian X-ray diffraction in colloidal photonic crystals. J. Appl. Crystallogr. 39, 137-44.

  • Renaud, G., Lazzari, R., Leroy, F. (2009). Probing surface and interface morphology with Grazing Incidence Small Angle X-Ray Scattering. Surf. Sci. Rep. 64, 255-380. [Web of Science]

  • Born, M., Wolf, E. (1999). Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge; New York: Cambridge University Press.

  • Daillant, J., Gibaud, A. (2009). X-Ray and Neutron Reflectivity : Principles and Applications. Berlin; Heidelberg: Springer.

About the article


Published Online: 2010-12-21

Published in Print: 2010-01-01



Citation Information: Measurement Science Review, ISSN (Online) 1335-8871, DOI: https://doi.org/10.2478/v10048-010-0027-1. Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
D. Korytár, P. Vagovič, K. Végsö, P. Šiffalovič, E. Dobročka, W. Jark, V. Áč, Z. Zápražný, C. Ferrari, A. Cecilia, E. Hamann, P. Mikulík, T. Baumbach, M. Fiederle, and M. Jergel
Journal of Applied Crystallography, 2013, Volume 46, Number 4, Page 945
[2]
Monika Benkovičová, Karol Végsö, Peter Šiffalovič, Matej Jergel, Eva Majková, Štefan Luby, and Alexander Šatka
Chemical Papers, 2013, Volume 67, Number 9
[3]
K. Vegso, P. Siffalovic, M. Jergel, M. Weis, M. Benkovicova, E. Majkova, S. Luby, T. Kocsis, and I. Capek
Langmuir, 2012, Volume 28, Number 25, Page 9395
[4]
K Vegso, P Siffalovic, M Benkovicova, M Jergel, S Luby, E Majkova, I Capek, T Kocsis, J Perlich, and S V Roth
Nanotechnology, 2012, Volume 23, Number 4, Page 045704

Comments (0)

Please log in or register to comment.
Log in