Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Measurement Science Review

The Journal of Institute of Measurement Science of Slovak Academy of Sciences

6 Issues per year

IMPACT FACTOR 2016: 1.344

CiteScore 2016: 1.88

SCImago Journal Rank (SJR) 2016: 0.495
Source Normalized Impact per Paper (SNIP) 2016: 1.419

Open Access
See all formats and pricing
More options …
Volume 11, Issue 2


Application of Wavelet Analysis in EMG Feature Extraction for Pattern Classification

A. Phinyomark
  • Department of Electrical Engineering, Faculty of Engineering, Prince of Songkla University, 15 Kanjanavanich Road, Kho Hong, Hat Yai, 90112, Songkhla, Thailand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Limsakul
  • Department of Electrical Engineering, Faculty of Engineering, Prince of Songkla University, 15 Kanjanavanich Road, Kho Hong, Hat Yai, 90112, Songkhla, Thailand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Phukpattaranont
  • Department of Electrical Engineering, Faculty of Engineering, Prince of Songkla University, 15 Kanjanavanich Road, Kho Hong, Hat Yai, 90112, Songkhla, Thailand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-06-03 | DOI: https://doi.org/10.2478/v10048-011-0009-y

Application of Wavelet Analysis in EMG Feature Extraction for Pattern Classification

Nowadays, analysis of electromyography (EMG) signal using wavelet transform is one of the most powerful signal processing tools. It is widely used in the EMG recognition system. In this study, we have investigated usefulness of extraction of the EMG features from multiple-level wavelet decomposition of the EMG signal. Different levels of various mother wavelets were used to obtain the useful resolution components from the EMG signal. Optimal EMG resolution component (sub-signal) was selected and then the reconstruction of the useful information signal was done. Noise and unwanted EMG parts were eliminated throughout this process. The estimated EMG signal that is an effective EMG part was extracted with the popular features, i.e. mean absolute value and root mean square, in order to improve quality of class separability. Two criteria used in the evaluation are the ratio of a Euclidean distance to a standard deviation and the scatter graph. The results show that only the EMG features extracted from reconstructed EMG signals of the first-level and the second-level detail coefficients yield the improvement of class separability in feature space. It will ensure that the result of pattern classification accuracy will be as high as possible. Optimal wavelet decomposition is obtained using the seventh order of Daubechies wavelet and the forth-level wavelet decomposition.

Keywords: Electromyography signal; EMG; feature extraction; wavelet transform; mean absolute value; root mean square; multi-resolution analysis

  • Canal, M. R. (2010). Comparison of wavelet and short time Fourier transform methods in the analysis of EMG signals. J. Med. Syst., 34 (1), 91-94.CrossrefWeb of ScienceGoogle Scholar

  • Oskoei, M. A., Hu, H. (2007). Myoelectric control systems - a survey. Biomed. Signal Process. Control., 2 (4), 275-294.CrossrefGoogle Scholar

  • Pauk, J. (2008). Different techniques for EMG signal processing. J. Vibroeng., 10 (4), 571-576.Google Scholar

  • Neto, O. P., Marzullo, A. C. D. (2009). Wavelet transform analysis of electromyography Kung Fu strikes data. J. Sports Sci. Med., 8 (CSSI 3), 25-28.Google Scholar

  • Kumar, S., Prasad, N. (2010). Torso muscle EMG profile differences between patients of back pain and control. Clin. Biomech., 25 (2), 103-109.CrossrefWeb of ScienceGoogle Scholar

  • Kumar, D. K., Pah, N. D., Bradley, A. (2003). Wavelet analysis of surface electromyography to determine muscle fatigue. IEEE Trans. Neural Syst. Rehabil. Eng., 11 (4), 400-406.CrossrefPubMedGoogle Scholar

  • Delis, A. L., Carvalho, J. L. A., Rocha, A. F. D., Ferreira, R. U., Rodrigues, S. S., Borges, G. A. (2009). Estimation of the knee joint angle from surface electromyographic signals for active control of leg prostheses. Physiol. Meas., 30 (9), 931-946.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Hussain, M. S., Reaz, M. B. I., Mohd-Yasin, F., Ibrahimy, M. I. (2009). Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction. Expert Syst., 26 (1), 35-48.CrossrefWeb of ScienceGoogle Scholar

  • Wang, G., Wang, Z., Chen, W., Zhuang, J. (2006). Classification of surface EMG signals using optimal wavelet packet method based on Davies-Bouldin criterion. Med. Biol. Eng. Comput., 44 (4), 865-872.PubMedCrossrefGoogle Scholar

  • Englehart, K., Hudgins, B., Parker, P. A. (2001). A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng., 48 (3), 302-311.PubMedCrossrefGoogle Scholar

  • Chu, J. U., Moon, I., Mun, M. S. (2006). A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric control. IEEE Trans. Biomed. Eng., 53 (11), 2232-2239.CrossrefPubMedGoogle Scholar

  • Chu, J. U., Moon, I., Lee, Y. J., Kim, S. K., Mun, M. S. (2007). A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control. IEEE/ASME Trans. Mechatron., 12 (3), 282-290.Web of ScienceCrossrefGoogle Scholar

  • Boostani, R., Moradi, M. H. (2003). Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol. Meas., 24 (2), 309-319.CrossrefPubMedGoogle Scholar

  • Khezri, M., Jahed, M. (2011). A neuro-fuzzy inference system for sEMG-based identification of hand motion commands. IEEE Trans. Ind. Electron., 58 (5), 1952-1960.Web of ScienceCrossrefGoogle Scholar

  • Rafiee, J., Rafiee, M. A., Yavari, F., Schoen, M. P. (2011). Feature extraction of forearm EMG signals for prosthetics. Expert Syst. Appl., 38 (4), 4058-4067.CrossrefGoogle Scholar

  • Reaz, M. B. I., Hussain, M. S., Mohd-Yasin, F. (2006). EMG analysis using wavelet functions to determine muscle contraction. In 8th International Conference on e-Health Networking, Applications and Services, August 2006. New Delhi, India, 132-134.Google Scholar

  • Mahaphonchaikul, K., Sueaseenak, D., Pintavirooj, C., Sangworasil, M., Tungjitkusolmun, S. (2010). EMG signal feature extraction based on wavelet transform. In 7th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications, May 2010. Chiang Mai, Thailand, 356-360.Google Scholar

  • Naik, G. R., Kumar, D. K., Arjunan, S. P. (2010). Pattern classification of Myo-Electrical signal during different Maximum Voluntary Contractions: A study using BSS techniques. Meas. Sci. Rev., 10 (1), 1-6.Web of ScienceCrossrefGoogle Scholar

  • Yang, G.-Y., Luo, Z.-Z. (2004). Surface electromyography disposal based on the method of wavelet de-noising and power spectrum. In International Confernece on Intelligent Mechatronics and Automation, August 2004. Chengdu, China, 896-900.Google Scholar

  • Buranachai, C., Thanvarungkul, P., Kanatharanaa, P., Meglinski, I. (2009). Application of wavelet analysis in optical coherence tomography for obscured pattern recognition. Laser Phys. Lett., 6 (12), 892-895.CrossrefGoogle Scholar

  • Phinyomark, A., Limsakul, C., Phukpattaranont, P. (2010). Optimal wavelet functions in wavelet denoising for multifunction myoelectric control. ECTI Transactions on Electrical Eng., Electronics, and Communications, 8 (1), 43-52.Google Scholar

  • Singh, B. N., Tiwari, A. K. (2006). Optimal selection of wavelet basis function applied to ECG signal denoising. Digit. Signal Process., 16 (3), 275-287.CrossrefGoogle Scholar

  • Phinyomark, A., Hirunviriya, S., Limsakul, C., Phukpattaranont, P. (2010). Evaluation of EMG feature extraction for hand movement recognition based on euclidean distance and standard deviation. In 7th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, May 2010. Chiang Mai, Thailand, 856-860.Google Scholar

  • Phinyomark, A., Limsakul, C., Phukpattaranont, P. (2009). A novel feature extraction for robust EMG pattern recognition. J. Comput., 1 (1), 71-80.Google Scholar

  • Zardoshti-Kermani, M., Wheeler, B. C., Badie, K., Hashemi, R. M. (1995). EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans. Rehabil. Eng., 3 (4), 324-333.CrossrefGoogle Scholar

  • Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.-M. (2010). Wavelet Toolbox User's Guide. The MathWorks, Inc. Retrieved June 28, 2010, from MathWorks http://www.mathworks.com/access/helpdesk/help/pdf_doc/wavelet/wavelet_ug.pdf

About the article

Published Online: 2011-06-03

Published in Print: 2011-01-01

Citation Information: Measurement Science Review, Volume 11, Issue 2, Pages 45–52, ISSN (Online) 1335-8871, DOI: https://doi.org/10.2478/v10048-011-0009-y.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Afsane Zadnia, Hamid Reza Kobravi, Mania Sheikh, and Hossein Asghar Hosseini
Basic and Clinical Neuroscience Journal, 2018, Volume 9, Number 1, Page 15
Talon Garikayi, Dawie Van den Heever, and Stephen Matope
Biomedical Signal Processing and Control, 2018, Volume 40, Page 10
Robert Stallard, Enrico Rejc, and Karla Conn Welch
Expert Systems with Applications, 2017, Volume 90, Page 232
Jaehwan Ryu, Byeong-Hyeon Lee, and Deok-Hwan Kim
IEEE Signal Processing Letters, 2017, Volume 24, Number 7, Page 929
A S Fadeev, V I Konovalov, T I Butakova, and A V Sobetsky
Journal of Physics: Conference Series, 2017, Volume 803, Page 012039
Bing-Ke Zhang, Guo-Liang Zhong, Hua Deng, T. Gong, T. Yang, and J. Xu
ITM Web of Conferences, 2016, Volume 7, Page 09016
Rami N. Khushaba, Ali Al-Timemy, Sarath Kodagoda, and Kianoush Nazarpour
Expert Systems with Applications, 2016, Volume 61, Page 154
Wheidima Carneiro de Melo, Eddie Batista de Lima Filho, and Waldir Sabino da Silva Júnior
BioMedical Engineering OnLine, 2016, Volume 15, Number 1
Zhiyuan Lu, Xiang Chen, Qiang Li, Xu Zhang, and Ping Zhou
IEEE Transactions on Human-Machine Systems, 2014, Volume 44, Number 2, Page 293
Zhang Yi, Feng Xiaolin, and Luo Yuan
The Journal of China Universities of Posts and Telecommunications, 2015, Volume 22, Number 2, Page 74
Maria Hakonen, Harri Piitulainen, and Arto Visala
Biomedical Signal Processing and Control, 2015, Volume 18, Page 334
Ercan Gokgoz and Abdulhamit Subasi
Biomedical Signal Processing and Control, 2015, Volume 18, Page 138
Yanyan Zhang, Gang Wang, Chaolin Teng, Zhongjiang Sun, and Jue Wang
BioMed Research International, 2014, Volume 2014, Page 1
Jianhua Cheng, Daidai Chen, Rene Landry Jr., Lin Zhao, and Dongxue Guan
Journal of Applied Mathematics, 2014, Volume 2014, Page 1
Mathieu Gauvin, Jean-Marc Lina, and Pierre Lachapelle
BioMed Research International, 2014, Volume 2014, Page 1
Aleš Procházka, Oldřich Vyšata, Ondřej Ťupa, Mohammadreza Yadollahi, and Martin Vališ
Neural Computing and Applications, 2014, Volume 25, Number 6, Page 1349
Fluctuation and Noise Letters, 2012, Volume 11, Number 04, Page 1250028
A. Phinyomark, H. Hu, P. Phukpattaranont, and C. Limsakul
Measurement Science Review, 2012, Volume 12, Number 3

Comments (0)

Please log in or register to comment.
Log in