Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Measurement Science Review

The Journal of Institute of Measurement Science of Slovak Academy of Sciences

6 Issues per year

IMPACT FACTOR 2016: 1.344

CiteScore 2016: 1.88

SCImago Journal Rank (SJR) 2016: 0.495
Source Normalized Impact per Paper (SNIP) 2016: 1.419

Open Access
See all formats and pricing
More options …
Volume 12, Issue 1


Determination of Sugar Content in Sugar Solutions using Interdigital Capacitor Sensor

N. Angkawisittpan
  • Department of Electrical Engineering, Faculty of Engineering, Mahasarakham University, 44150, Kantarawichai, Mahasarakham, Thailand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Manasri
  • Department of Electrical Engineering, Faculty of Engineering, Mahasarakham University, 44150, Kantarawichai, Mahasarakham, Thailand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-03-01 | DOI: https://doi.org/10.2478/v10048-012-0002-0

Determination of Sugar Content in Sugar Solutions using Interdigital Capacitor Sensor

A novel low-cost electronic tongue system for sugar content determination in sugar solutions is proposed. The system consists of a sine wave generator, a resistor, and an interdigital capacitor sensor forming a first-order electronic high-pass filter circuit. The interdigital capacitor sensor has the planar interdigital structure and the consecutive fingers are connected to positive and negative electrodes. The system has been assembled and the experiments were conducted. The experimental results show that the proposed system has a great potential to determine the sugar content in sugar solutions. It also provides an opportunity for the development of a microcontroller-based low-cost sensing system as an electronic tongue system.

Keywords: Interdigital capacitor; high-pass filter; relative permittivity; electronic tongue; sugar concentration

  • Berna, A. Z., Lammertyn, J., Saevels, S., Natale, C. D., Nicolai, B. M. (2004). Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile. Sensors and Actuators B: Chemical, 97 (2-3), 324-333.CrossrefGoogle Scholar

  • Beullens, K., Kirsanov, D., Irudayaraj, J., Rudnitskaya, A., Legin, A., Nicolai, B. M., Lammertyn, J. (2006). The electronic tongue and ATR-FTIR for rapid detection of sugars and acids in tomatoes. Sensors and Actuators B: Chemical, 116 (1-2), 107-115.CrossrefGoogle Scholar

  • Ivarsson, P., Holmin, S., Hojer, N., Krantz-Rulcker, C., Winquist, F. (2001). Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms. Sensors and Actuators B: Chemical, 76 (1), 449-454.CrossrefGoogle Scholar

  • Bleibaum, R. N., Stone, H., Tan, T., Labreche, S., Saint-Martin, E., Isz, S. (2002). Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices. Food Quality and Preference, 13 (6), 409-422.CrossrefGoogle Scholar

  • Tian, S. Y., Deng, S. P., Chen, Z. X. (2007). Multifrequency large amplitude pulse voltammetry: A novel electrochemical method for electronic tongue. Sensors and Actuators B: Chemical, 123 (2), 1049-1056.Web of ScienceCrossrefGoogle Scholar

  • Beullens, K., Meszaros, P., Vermeir, S., Kirsanov, D., Legin, A., Buysens, S., Cap, N., Nicolai, B. M., Lammertyn, J. (2008). Analysis of tomato taste using two types of electronic tongues. Sensors and Actuators B: Chemical, 131 (1), 10-17.CrossrefWeb of ScienceGoogle Scholar

  • Cole, M., Covington, J. A., Gardner, J. W. (2011). Combined electronic nose and tongue for a flavour sensing system. Sensors and Actuators B: Chemical, 156 (2), 832-839.Web of ScienceCrossrefGoogle Scholar

  • Novakowski, W., Bertotti, M., Paixao, T. R. L. C. (2011). Use of copper and gold electrodes as sensitive elements for fabrication of an electronic tongue: Discrimination of wines and whiskies. Microchemical Journal, 99 (1), 145-151.Web of ScienceCrossrefGoogle Scholar

  • Watanabe, K., Taka, Y., Fujiwara, O. (2009). Cole-Cole measurement of dispersion properties for quality evaluation of red wine. Measurement Science Review, 9 (5), 113-116.Web of ScienceGoogle Scholar

  • Yeow, Y. K., Abbas, Z., Khalid, K. (2010). Application of microwave moisture sensor for determination of oil palm fruit ripeness. Measurement Science Review, 10 (1), 7-14.Web of ScienceGoogle Scholar

  • Abu Al Aish, A., Rehman, M., Abdullah, M. Z., Abu Hassan, A. H. (2010). Microcontroller based capacitive mass measuring system. Measurement Science Review, 10 (1), 15-18.Web of ScienceGoogle Scholar

  • Jusoh, M. A., Abbas, Z., Hassan, J., Azmi, B. Z., Ahmad, A. F. (2011). A simple procedure to determine complex permittivity of moist materials using standard commercial coaxial sensor. Measurement Science Review, 11 (1), 19-22.Web of ScienceGoogle Scholar

  • Salvo, P., Francesco, F. D., Costanzo, D., Ferrari, C., Trivella, M. G., Rossi, D. D. (2010). A wearable sensor for measuring sweat rate. IEEE Sensors Journal, 10 (10), 1557-1558.Web of ScienceCrossrefGoogle Scholar

  • Sivaramakrishnan, S., Rajamani, R., Johnson, B. D. (2010). Dynamic model inversion techniques for breath-by-breath measurement of carbon dioxide from low bandwidth sensors. IEEE Sensors Journal, 10 (10), 1637-1646.Web of ScienceCrossrefGoogle Scholar

  • Kim, H. S., Sivaramakrishnan, S., Sezan, A. S., Rajamani, R. (2010). A novel real-time capacitance estimation methodology for battery-less wireless sensor systems. IEEE Sensors Journal, 10 (10), 1647-1657.Web of ScienceGoogle Scholar

  • Zhuang, X., Sing, M. L. C., Cordier, C., Saez, S., Dolabdjian, C., Das, J., Gao, J., Li, J., Viehland, D. (2011). Analysis of noise in magnetoelectric thin-layer composites used as magnetic sensors. IEEE Sensors Journal, 11 (10), 2183-2188.CrossrefWeb of ScienceGoogle Scholar

  • Ye, J., Peng, L., Wang, W., Zhou, W. (2011). Optimization of helical capacitance sensor for void fraction measurement of gas-liquid two-phase flow in a small diameter tube. IEEE Sensors Journal, 11 (10), 2189-2196.CrossrefWeb of ScienceGoogle Scholar

  • Yu, G., Bu, X., Yang, B., Li, Y., Xiang, C. (2011). Differential-type GMI magnetic sensor based on longitudinal excitation IEEE Sensors Journal, 11 (10), 2273-2278.Google Scholar

  • Mukhopadhyay, S. C., Gooneratne, C. P. (2007). A novel planar-type biosensor for noninvasive meat inspection. IEEE Sensors Journal, 7 (9), 1340-1346.CrossrefWeb of ScienceGoogle Scholar

  • Kim, J. W. (2008). Development of Interdigitated Capacitor Sensors for Direct and Wireless Measurements of the Dielectric Properties of Liquids. Ph.D. Dissertation. Department of Electrical and Computer Engineering, University of Texas, Austin, USA.Google Scholar

  • Zhang, S. (2010). Interdigitated Capacitor Sensor for Complex Dielectric Constant Sensing. M. S. Thesis. Department of Electrical and Computer Engineering, University of Texas, Austin, USA.Google Scholar

  • Stojanovic, G., Radovanovic, M., Malesev, M., Radonjanin, V. (2010). Monitoring of water content in building materials using a wireless passive sensor. Sensors, 10 (5), 4270-4280.CrossrefWeb of ScienceGoogle Scholar

  • Mukhopadhyay, S. C., Gooneratne, C. P., Gupta, G. S., Demidenko, S. N. (2006). A low-cost sensing system for quality monitoring of dairy products. IEEE Transactions on Instrumentation and Measurement, 55 (4), 1331-1338.CrossrefGoogle Scholar

  • Laville, C., Pellet, C. (2002). Interdigitated humidity sensors for a portable clinical microsystem. IEEE Transactions on Biomedical Engineering, 49 (10), 1162-1167.CrossrefGoogle Scholar

  • Radke, S. M., Alocilja, E. C. (2004). Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sensors Journal, 4 (4), 434-440.CrossrefGoogle Scholar

  • Radke, S. M., Alocilja, E. C. (2005). A high density microelectrode array biosensor for detection of E. coli O154:H7. Biosensors and Bioelectronics, 20 (8), 1662-1667.Google Scholar

  • Radke, S. M., Alocilja, E. C. (2005). A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sensors Journal, 5 (4), 744-750.CrossrefGoogle Scholar

  • Varshney, M., Li, Y. (2009). Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosensors and Bioelectronics, 24 (10), 2951-2960.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Syaifudin, A. R. M., Jayasundera, K. P., Mukhopadhyay, S. C. (2009). A low cost novel sensing system for detection of dangerous marine biotoxins in seafood. Sensors and Actuators B: Chemical, 137 (1), 67-75.CrossrefWeb of ScienceGoogle Scholar

  • Alexander, C. K., Sadiku, M. N. O. (1999). Fundamentals of Electric Circuits. McGraw Hill, 608-610.Google Scholar

  • Mamishev, A., Sundara-Rajan, K., Yang, F., Du, Y., Zahn. M. (2004). Interdigital sensors and transducers. Proceedings of the IEEE, 92 (5), 808-845.CrossrefGoogle Scholar

  • Ong, K. G., Grimes, C. A. (2000). A resonant printcircuit sensor for remote query monitoring of environmental parameters. Smart Matererials and Structures, 9 (4), 421-428.Google Scholar

  • Zajicek, R., Oppl, L., Vrba, J. (2008). Broadband measurement of complex permittivity using reflection method and coaxial probes. Radioengineering, 17 (1), 14-19.Google Scholar

  • Korolev, K. A., Afsar, M. N. (2005). Complex dielectric permittivity measurements of materials in millimeter waves. In The Joint 30th International Conference on Infrared and Millimeter Waves & 13th International Conference on Terahertz Electronics (IRMMW-THz 2005). IEEE, Vol. 2, 594-595.Google Scholar

About the article

Published Online: 2012-03-01

Published in Print: 2012-01-01

Citation Information: Measurement Science Review, Volume 12, Issue 1, Pages 8–13, ISSN (Online) 1335-8871, DOI: https://doi.org/10.2478/v10048-012-0002-0.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Srinivasulu Kanaparthi
Flexible and Printed Electronics, 2018, Volume 3, Number 1, Page 015009
Srinivasulu Kanaparthi and Sushmee Badhulika
RSC Adv., 2016, Volume 6, Number 98, Page 95574
Srinivasulu Kanaparthi and Sushmee Badhulika
Sensors and Actuators B: Chemical, 2017, Volume 242, Page 857
Md. Khan, Alireza Khalilian, and Shin-Won Kang
Sensors, 2016, Volume 16, Number 5, Page 668
Supakorn Harnsoongnoen and Anuwat Wanthong
Measurement Science and Technology, 2016, Volume 27, Number 1, Page 015103
Asif Iqbal Zia, Subhas Chandra Mukhopadhyay, Pak Lam Yu, Ibrahim H. Al-Bahadly, Chinthaka P. Gooneratne, and Jurgen Kosel
IEEE Sensors Journal, 2015, Volume 15, Number 6, Page 3110
Mojtaba Naderi-Boldaji, Milad Fazeliyan-Dehkordi, Seyed Ahmad Mireei, and Mahdi Ghasemi-Varnamkhasti
Biosystems Engineering, 2015, Volume 140, Page 1
M. M. Rashid, M. Rabani bin M. Romlay, M. M. Ferdaus, and Abdullah Al-Mamun
International Journal of Electronics and Electrical Engineering, 2014, Volume 3, Number 4
Adnan Nadeem, Muhammad Azhar Hussain, Obaidullah Owais, Abdul Salam, Sarwat Iqbal, and Kamran Ahsan
Computer Networks, 2015, Volume 83, Page 363

Comments (0)

Please log in or register to comment.
Log in