Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Measurement Science Review

The Journal of Institute of Measurement Science of Slovak Academy of Sciences

6 Issues per year

IMPACT FACTOR 2016: 1.344

CiteScore 2016: 1.88

SCImago Journal Rank (SJR) 2016: 0.495
Source Normalized Impact per Paper (SNIP) 2016: 1.419

Open Access
See all formats and pricing
More options …
Volume 12, Issue 1


Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

M. Hussain / Md. Mamun
  • Smart Engineering System Research Group, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-03-01 | DOI: https://doi.org/10.2478/v10048-012-0005-x

Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

Keywords: Electromyography; surface electromyography; wavelet; bispectrum

  • Emley, M. S., Gilmore, L. D., Roy, S. H. (1992). Electromyography: Unlocking the secrets of back pain. IEEE Potentials, 11 (2), 25-30.Google Scholar

  • Broman, H., De Luca, C. J., Mambrito, B. (1985). Motor unit recruitment and firing rates interaction in the control of human muscles. Brain Res., 337, 311-319.Google Scholar

  • Kaplanis, P. A., Pattichis, C. S., Hadjileontiadis, L. J., Panas S. M. (2000). Bispectral analysis of surface EMG. In 10th Mediterranean Electrotechnical Conference (MELECON 2000), 29-31 May 2000. IEEE, Vol. 2, 770-773.Google Scholar

  • Edwards, R. H. T. (1981). Human muscle function and fatigue. In Proceeding of the Ciba Foundation Sympozium. Wiley, 1-18.Google Scholar

  • Phinyomark, A., Limsakul, C., Phukpattaranont, P. (2011). Application of wavelet analysis in EMG feature extraction for pattern classification. Meas. Sci. Rev., 11 (2), 45-52.Web of ScienceGoogle Scholar

  • Lindstrom, L., Kadefors, R., Petersen, I. (1977). An electromyographic index for localized muscle fatigue. J. Appl. Physiol., 43, 750-754.Google Scholar

  • Stulen, F. B., De Luca, C. J. (1981). Frequency parameters of myoelectric signal as a measure of muscle conduction velocity. IEEE Trans. Biomed. Eng., 28 (7), 515-523.CrossrefGoogle Scholar

  • Diószeghy, P., Egerházi, A., Molnár, M., Mechler, F. (1996). Turn-amplitude analysis in neuromuscular diseases. Electromyogr. Clin. Neurophysiol., 36 (8), 463-8.PubMedGoogle Scholar

  • Taku, O., Toshikazu, K., Yoshiki, O., Kookho, L., Yasuhiko, K., Shunzo, A., Fumihiko, N. (2002). Power spectrum analysis of compound muscle action potential in carpal tunnel syndrome patients. J. Orthop. Surg., 10 (1), 67-71.Google Scholar

  • Yana, K., Mizuta, H., Kajiyama, R. (1995). Surface electromyogram recruitment analysis using higher order spectrum. In IEEE 17th Annual Conference on Engineering in Medicine and Biology Society, 20-23 Sept. 1995. IEEE, Vol. 2, 1345-1346.Google Scholar

  • Hussain, M. S., Reaz, M. B. I., Yasin, F. M., Ibrahimy, M. I. (2009). Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction. Expert Systems, 26 (1), 35-48.CrossrefWeb of ScienceGoogle Scholar

  • Shahid, S., Walker, J., Lyons, G. M., Byrne, C. A., Nene, A. V. (2005). Application of higher order statistics techniques to EMG signals to characterize the motor unit action potential. IEEE Trans. Biomed. Eng. 52 (7), 1195-1209.PubMedCrossrefGoogle Scholar

  • Reaz, M. B. I., Hussain, M. S., Yasin, F. M. (2006). Techniques of EMG signal analysis: Detection, processing, classification and applications. Biol. Proced. Online, 8 (1), 11-35.CrossrefGoogle Scholar

  • Kumar, D. K., Pah, N. D., Bradley, A. (2003). Wavelet analysis of surface electromyography to determine muscle fatigue. IEEE Trans. Neural Syst. Rehabil. Eng., 11 (4), 400-406.CrossrefPubMedGoogle Scholar

  • Walker, J. (1999). A Primer on Wavelets and Their Scientific Applications. Chapman & Hall.Google Scholar

  • Nikias, C. L., Petropulu, A. P. (1993). Higher-Spectral Analysis: A Nonlinear Signal Processing Framework. Prentice Hall.Google Scholar

  • Hinich, M. J. (1982). Testing for gaussianity and linearity of a stationary time series. Journal of Time Series Analysis, 3 (3), 169-176.Google Scholar

  • Fackrell, J. W. A. (1996). Bispectral Analysis of Speech Signals. PhD Thesis, University of Edinburgh.Google Scholar

  • Nikias, C. L., Raghuveer, M. R. (1987). Bispectrum estimation: A digital signal processing framework. Proc. IEEE, 75 (7), 869-891.CrossrefGoogle Scholar

  • Elgar, S., Guza, R. T. (1988). Statistics of bicoherence. IEEE Trans. Acoust. Speech Signal Process., 36 (10), 1667-1668.CrossrefGoogle Scholar

  • Motion Lab Systems, Inc. http://www.emgsrus.com

  • Hermens, H. J., Bruggen, T. V. (1988). Simulation of fatigue related changes in spectral parameters of surface EMG. In Engineering in Medicine and Biology Society: Proceedings of the Annual International Conference of the IEEE, 4-7 Nov. 1988. IEEE, Vol. 4, 1706-1707.Google Scholar

  • Hagberg, M., Ericson, B. E. (1982). Myoelectric power spectrum dependence of muscular contraction level of elbow flexors. Eur. J. Appl. Physiol., 48 (2), 147-156.CrossrefGoogle Scholar

  • Moritani, T., Nagata, A., Muro, M. (1982). Electromyographic manifestations of muscular fatigue. Med. Sci. Sports Exerc., 14, 198-202.PubMedGoogle Scholar

About the article

Published Online: 2012-03-01

Published in Print: 2012-01-01

Citation Information: Measurement Science Review, Volume 12, Issue 1, Pages 28–33, ISSN (Online) 1335-8871, DOI: https://doi.org/10.2478/v10048-012-0005-x.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ganesh R. Naik, Suviseshamuthu Easter Selvan, Massimiliano Gobbo, Amit Acharyya, and Hung T. Nguyen
IEEE Access, 2016, Volume 4, Page 4025
Audrey Parent, Maxime Raison, Annie Pouliot-Laforte, Pierre Marois, Désirée B. Maltais, and Laurent Ballaz
Clinical Biomechanics, 2016, Volume 34, Page 18
Rubana Chowdhury, Mamun Reaz, Mohd Ali, Ashrif Bakar, K. Chellappan, and T. Chang
Sensors, 2013, Volume 13, Number 9, Page 12431
A. Phinyomark, H. Hu, P. Phukpattaranont, and C. Limsakul
Measurement Science Review, 2012, Volume 12, Number 3

Comments (0)

Please log in or register to comment.
Log in