Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Measurement Science Review

The Journal of Institute of Measurement Science of Slovak Academy of Sciences

6 Issues per year

IMPACT FACTOR 2016: 1.344

CiteScore 2016: 1.88

SCImago Journal Rank (SJR) 2016: 0.495
Source Normalized Impact per Paper (SNIP) 2016: 1.419

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Artifact Removal from Biosignal using Fixed Point ICA Algorithm for Pre-processing in Biometric Recognition

Puneet Mishra / Sunil Kumar Singla
Published Online: 2013-02-09 | DOI: https://doi.org/10.2478/msr-2013-0001


In the modern world of automation, biological signals, especially Electroencephalogram (EEG) and Electrocardiogram (ECG), are gaining wide attention as a source of biometric information. Earlier studies have shown that EEG and ECG show versatility with individuals and every individual has distinct EEG and ECG spectrum. EEG (which can be recorded from the scalp due to the effect of millions of neurons) may contain noise signals such as eye blink, eye movement, muscular movement, line noise, etc. Similarly, ECG may contain artifact like line noise, tremor artifacts, baseline wandering, etc. These noise signals are required to be separated from the EEG and ECG signals to obtain the accurate results. This paper proposes a technique for the removal of eye blink artifact from EEG and ECG signal using fixed point or FastICA algorithm of Independent Component Analysis (ICA). For validation, FastICA algorithm has been applied to synthetic signal prepared by adding random noise to the Electrocardiogram (ECG) signal. FastICA algorithm separates the signal into two independent components, i.e. ECG pure and artifact signal. Similarly, the same algorithm has been applied to remove the artifacts (Electrooculogram or eye blink) from the EEG signal.

Keywords : Independent component analysis; electroencephalogram; electrocardiogram; electrooculogram

  • [1] Teplan, M. (2002). Fundamentals of EEG measurement. Measurement Science Review, 2 (2), 1-11.Google Scholar

  • [2] Eischen, S.E., Luckeritz, J.Y., Polish, J. (1995). Spectral analysis of EEG from families. BiologicalPsychology, 41, 61-68.Google Scholar

  • [3] Svidevskaya, N.E., Koroľkova, T.A. (1995). Genetic features of the human cerebral cortex. Neuroscience and Behavioural Physiology, 25 (5), 370-376.CrossrefGoogle Scholar

  • [4] Vogel, F. (1970). The genetic basis of the normal EEG. Human Genetics, 10, 91-114.Google Scholar

  • [5] Poulos, M., Rangoussi, M., Hrissikopoulos, V., Evangelou, A. (1999). Person identification based on parametric processing of the EEG. In Proceedings of the IEEE International Conference on Electronics,Circuits, and Systems, 5-8 September 1999. IEEE, 283-286.Google Scholar

  • [6] Biel, L., Pettersson, O., Philipson, L., Wide, P. (2001). ECG analysis: A new approach in human identification. IEEE Transactions on Instrumentation and Measurement, 50, 808-812.Google Scholar

  • [7] Irvine, J.M., Wiederhold, B.K., Gavshon, L.W., Israel, S., McGehee, S.B., Meyer, R., Wiederhold, M.D. (2001). Heart rate variability: A new biometric for human identification. In International Conference on Artificial Intelligence (IC-AI 2001). Las Vegas, Nevada, 1106-1111.Google Scholar

  • [8] Gupta, C.N., Palaniappan, R., Swaminathan, S. (2008). On the analysis of various techniques for a novel Biometric system. International Journal of Medical Engineering and Informatics, 1 (2), 266-273.Google Scholar

  • [9] Ursulean, R., Lazar, A.M. (2009). Detrended crosscorrelation analysis of biometric signals used in a new authentication method. Electronics and Electrical Engineering, 1 (89), 55-58.Google Scholar

  • [10] Gupta, C.N., Khan, Y.U., Palaniappan, R., Sepulveda, F. (2009). Wavelet framework for improved target detection in oddball paradigms using P300 and gamma band analysis. Biomedical Soft Computing and Human Sciences, 14 (2), 61-67.Google Scholar

  • [11] Palaniappan, R., Eswaran, C. (2009). Using genetic algorithm to select the presentation order of training patterns that improves simplified fuzzy ARTMAP classification performance. Applied Soft Computing, 9, 100-106.CrossrefWeb of ScienceGoogle Scholar

  • [12] Abdullah, M.K., Subari, K.S., Cheang Loong, J.L., Ahmad, N.N. (2010). Analysis of the EEG signal for a practical biometric system. World Academy of Science,Engineering and Technology, 68, 1123-1127.Google Scholar

  • [13] Yang, X., Dai, J., Zhang, H., Wu, B., Su, Y., Chen, W., Zheng, X. (2011). P300 Wave based person identification using LVQ neural network. Journal of Convergence Information Technology, 6 (3), 296-302.Google Scholar

  • [14] Gupta, C.N., Palaniappan, R., Paramesran, R. (2012). Exploiting the P300 paradigm for cognitive biometrics. International Journal of Cognitive Biometrics, 1 (1), 26-38.Google Scholar

  • [15] Singh, Y.N., Singh, S.K. (2012). Evaluation of electrocardiogram for biometric authentication. Journal of Information Security, 12 (3), 39-48.Google Scholar

  • [16] Israel, S.A., Scruggs, W.T., Worck, W.J., Irvine, J.M. (2003). Fusing face and ECG for person identification. In Proceedings of IEEE Applied Imagery Pattern Recognition Workshop, 15-17 October 2003. IEEE, 225-231.Google Scholar

  • [17] Shen, T.W., Tompkins, W.J., Hu, Y.H (2002). Onelead ECG for identity verification. In ProceedingsIEEE EMBS/BMES Conference, 23-26 October 2002. IEEE, 62-63.Google Scholar

  • [18] Makeig, S., Bell, A.J., Jung, T.P., Sejnowski, T.J. (1996). Independent component analysis of electroencephalographic data. Advances in Neural InformationProcessing Systems, 8, 145-151.Google Scholar

  • [19] Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEETransactions on Neural Networks, 10 (3), 626-634.Google Scholar

  • [20] Vigario, R., Sarela, J., Jousmaki, V., Hamalainen, M., Oja, E. (2000). Independent component approach to the analysis of EEG and MEG recordings. IEEETransactions on Biomedical Engineering, 47 (5), 589-593.Google Scholar

  • [21] Jiang, J.A., Chao, C.F., Chiu, M.J., Lee, R.G., Tseng, C.L., Lin, R. (2007). An automatic analysis method for detecting and eliminating ECG artifacts in EEG. Computers in Biology and Medicine, 37, 1660-1671.Web of ScienceCrossrefGoogle Scholar

  • [22] Gupta, C.N., Palaniappan, R. (2011). Reducing power spectral density of eye blink artifact through improved genetic algorithm. In International Conference onBioinformatics and Biomedical Technology, 25-27 March 2011.Google Scholar

  • [23] Palaniappan, R., Gupta, C.N. (2006). Genetic algorithm based independent component analysis to separate noise from electrocardiogram signals. In Proceedings of IEEE International Conference onEngineering of Intelligent Systems, 22-23 April 2006. IEEE, 1-5.Google Scholar

  • [24] Hyvarinen, A., Erkki, O. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13 (4-5), 411-430.CrossrefGoogle Scholar

  • [25] Ungureanu, M., Bigan, C., Strungaru, R., Lazarescu, V. (2004). Independent component analysis applied in biomedical signal processing. Measurement ScienceReview, 4, 1-8.Google Scholar

  • [26] Krishnaveni, V., Jayaraman, S., Kumar, P.M., Shivakumar, K., Ramadoss, K. (2005). Comparison of independent component analysis algorithms for removal of ocular artifacts from electroencephalogram. Measurement Science Review, 5 (2), 67-78.Google Scholar

  • [27] Jung, T.P., Makeigh, S., Humphries, C., Lee, T.W., Mckeown, M.J., Iragui, V., Sejnowski, J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37, 163-178.PubMedCrossrefGoogle Scholar

  • [28] Xu, L., Cheung, C., Yang, H., Amari, S. (1997). Independent component analysis by the informationtheoretic approach with mixture of densities. IEEETransactions on Neural Networks, 5, 1821-1826.Google Scholar

  • [29] Agrawal, G., Singh, M., Singh, V.R., Singh, H.R. (2008). Reduction of artefacts in 12-channel ECG signals using FastICA algorithm. Journal of Scientificand Industrial Research, 67, 43-48.Google Scholar

  • [30] Palaniappan, R. (2010). Biological Signal Analysis. Ventus Publishing.Google Scholar

  • [31] Patil, D., Das, N., Routray, A. (2011). Implementation of fast-ICA: A performance based comparison between floating points, and fixed point DSP platform. Measurement Science Review, 11 (4), 118-124.Web of ScienceGoogle Scholar

About the article

Published Online: 2013-02-09

Published in Print: 2013-01-01

Citation Information: Measurement Science Review, Volume 13, Issue 1, Pages 7–11, ISSN (Online) 1335-8871, DOI: https://doi.org/10.2478/msr-2013-0001.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Thea Radüntz
Frontiers in Physiology, 2018, Volume 9
T. Nimmy John, Subha D. Puthankattil, and Ramshekhar Menon
Cognitive Neurodynamics, 2018
Xun Chen, Xueyuan Xu, Aiping Liu, Martin J. McKeown, and Z. Jane Wang
IEEE Transactions on Instrumentation and Measurement, 2018, Volume 67, Number 2, Page 359
Xun Chen, Hu Peng, Fengqiong Yu, and Kai Wang
IEEE Transactions on Instrumentation and Measurement, 2017, Volume 66, Number 7, Page 1770
Rishabh Gupta, Hubert J. Banville, and Tiago H. Falk
IEEE Journal of Selected Topics in Signal Processing, 2017, Volume 11, Number 1, Page 22
Won-Du Chang, Ho-Seung Cha, Kiwoong Kim, and Chang-Hwan Im
Computer Methods and Programs in Biomedicine, 2016, Volume 124, Page 19
Antonio Fratini, Mario Sansone, Paolo Bifulco, and Mario Cesarelli
BioMedical Engineering OnLine, 2015, Volume 14, Number 1
T. Radüntz, J. Scouten, O. Hochmuth, and B. Meffert
Journal of Neuroscience Methods, 2015, Volume 243, Page 84
Rohit Khokher, Ram Chandra Singh, and Rahul Kumar
Macromolecular Symposia, 2015, Volume 347, Number 1, Page 16

Comments (0)

Please log in or register to comment.
Log in