Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Measurement Science Review

The Journal of Institute of Measurement Science of Slovak Academy of Sciences

6 Issues per year


IMPACT FACTOR 2016: 1.344

CiteScore 2016: 1.88

SCImago Journal Rank (SJR) 2016: 0.495
Source Normalized Impact per Paper (SNIP) 2016: 1.419

Open Access
Online
ISSN
1335-8871
See all formats and pricing
More options …
Volume 13, Issue 5 (Oct 2013)

Issues

Influence of Mobile Phones on the Quality of ECG Signal Acquired by Medical Devices

T. Buczkowski
  • Corresponding author
  • Institute of Radioelectronics, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska Str., 15/19, 00-665, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Janusek
  • Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena Str., 4, 02-109, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ H. Zavala-Fernandez
  • Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena Str., 4, 02-109, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Skrok
  • Institute of Radioelectronics, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska Str., 15/19, 00-665, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Kania
  • Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena Str., 4, 02-109, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Liebert
  • Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena Str., 4, 02-109, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-11-02 | DOI: https://doi.org/10.2478/msr-2013-0035

Abstract

Health aspects of the use of radiating devices, like mobile phones, are still a public concern. Stand-alone electrocardiographic systems and those built-in, more sophisticated, medical devices have become a standard tool used in everyday medical practice. GSM mobile phones might be a potential source of electromagnetic interference (EMI) which may affect reliability of medical appliances. Risk of such event is particularly high in places remote from GSM base stations in which the signal received by GSM mobile phone is weak. In such locations an increase in power of transmitted radio signal is necessary to enhance quality of the communication. In consequence, the risk of interference of electronic devices increases because of the high level of EMI.

In the present paper the spatial, temporal, and spectral characteristics of the interference have been examined. The influence of GSM mobile phone on multilead ECG recordings was studied. It was observed that the electrocardiographic system was vulnerable to the interference generated by the GSM mobile phone working with maximum transmit power and in DTX mode when the device was placed in a distance shorter than 7.5 cm from the ECG electrode located on the surface of the chest. Negligible EMI was encountered at any longer distance.

Keywords: GSM mobile phone; electrocardiogram; electromagnetic interference

  • [1] Ministry of Internal Affairs and Communications - MIC. (2007). Study report on the effect of radio waveson medical devices.Google Scholar

  • [2] Baranchuk, A., Kang, J., Shaw, C., Campbell, D., Ribas, S., Hopman, W.M. et al. (2009). Electromagnetic interference of communication devices on ECG machines. Clinical Cardiology, 32 (10), 588-592.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [3] van Lieshout, E.J., van der Veer, S.N., Hensbroek, R., Korevaar, J.C., Vroom, M.B., Schultz, M.J. (2007). Interference by new-generation mobile phones on critical care medical equipment. Critical Care, 11 (5), R98.Web of ScienceGoogle Scholar

  • [4] Wallin, M.K., Marve, T., Hakansson, P.K. (2005).Modern wireless telecommunication technologies and their electromagnetic compatibility with lifesupporting equipment. Anesthesia and Analgesia, 101 (5), 1393-1400.Google Scholar

  • [5] Periyasam, M., Dhanasekaran, R. (2013).Electromagnetic interference on critical medical equipments by RF devices. In InternationalConference on Communications and SignalProcessing (ICCSP), 3-5 April 2013. IEEE, 78-82.Google Scholar

  • [6] Luca, C., Salceanu, A. (2012). Study upon electromagnetic interferences inside an intensive care unit. In International Conference and Exposition onElectrical and Power Engineering (EPE 2012), 25-27 October 2012. IEEE.Google Scholar

  • [7] Nakai, K., Takahashi, S., Suzuki, A., Hagiwara, N., Futagawa, K., Shoda, M. et al. (2011). Novel algorithm for identifying T-wave current density alternans using synthesized 187-channel vectorprojected body surface mapping. Heart and Vessels, 26 (2), 160-167.Web of ScienceGoogle Scholar

  • [8] Calcagnini, G., Censi, F., Bartolini, P. (2007).Electromagnetic immunity of medical devices: The European regulatory framework. Annali - IstitutoSuperiore di Sanita, 43 (3), 268-276.Google Scholar

  • [9] Fernández-Chimeno, M., Silva, F. (2010). Mobile phones electromagnetic interference in medical environments: A review. In IEEE InternationalSymposium on Electromagnetic Compatibility (EMC), 25-30 July 2010. IEEE, 311-316.Google Scholar

  • [10] Bit-Babik, G., Morrissey, J.J., Faraone, A., Balzano, Q. (2007). Electromagnetic compatibility management of wireless transceivers in electromagneticinterference- sensitive medical environments. Annali -Istituto Superiore di Sanita, 43 (3), 218-224.Google Scholar

  • [11] Lawrentschuk, N., Bolton, D.M. (2004). Mobile phone interference with medical equipment and its clinical relevance: A systematic review. Medical Journal ofAustralia, 181 (3), 145-149.Google Scholar

  • [12] Morrissey, J.J., Swicord, M., Balzano, Q. (2002).Characterization of electromagnetic interference of medical devices in the hospital due to cell phones.Health Physics, 82 (1), 45-51.PubMedCrossrefGoogle Scholar

  • [13] Tri, J.L., Severson, R.P., Firl, A.R., Hayes, D.L., Abenstein, J.P. (2005). Cellular telephone interference with medical equipment. Mayo Clinic Proceedings, 80 (10), 1286-1290.CrossrefPubMedGoogle Scholar

  • [14] Hietanen, M., Sibakov, V., Hällfors, S., von Nandelstadh, P. (2000). Safe use of mobile phones in hospitals. Health Physics, 79 (5 Suppl), S77-S84.CrossrefGoogle Scholar

  • [15] Barbaro, V., Bartolini, P., Bellocci, F., Caruso, F., Donato, A., Gabrielli, D. et al. (1999). Electromagnetic interference of digital and analog cellular telephones with implantable cardioverter defibrillators: In vitro and in vivo studies. PACE, 22 (4 Pt 1), 626-634.CrossrefGoogle Scholar

  • [16] Bassen, H.I., Moore, H.J., Ruggera, P.S. (1998).Cellular phone interference testing of implantable cardiac defibrillators in vitro. PACE, 21 (9), 1709-1715.CrossrefGoogle Scholar

  • [17] Karczmarewicz, S., Janusek, D., Buczkowski, T., Gutkowski, R., Kulakowski, P. (2001). Influence of mobile phones on accuracy of ECG interpretation algorithm in automated external defibrillator.Resuscitation, 51 (2), 173-177.CrossrefGoogle Scholar

  • [18] Censi, F., Calcagnini, G., Triventi, M., Mattei, E., Bartolini, P. (2007). Interference between mobile phones and pacemakers: A look inside. Annali -Istituto Superiore di Sanita, 43 (3), 254-259.Google Scholar

  • [19] Gwechenberger, M., Rauscha, F., Stix, G., Schmid, G., Strametz-Juranek, J. (2006). Interference of programmed electromagnetic stimulation with pacemakers and automatic implantable cardioverter defibrillators. Bioelectromagnetics, 27 (5), 365-377.CrossrefGoogle Scholar

  • [20] Hekmat, K., Salemink, B., Lauterbach, G., Schwinger, R.H., Sudkamp, M., Weber, H.J. et al. (2004).Interference by cellular phones with permanent implanted pacemakers: An update. Europace, 6 (4), 363-369.CrossrefGoogle Scholar

  • [21] Tri, J.L., Hayes, D.L., Smith, T.T., Severson, R.P. (2001). Cellular phone interference with external cardiopulmonary monitoring devices. Mayo ClinicProceedings, 76 (1), 11-15.Google Scholar

  • [22] Ming, H., Zhang, Y., Pan, W. (2006). Evaluation and removal of EMI between ECG monitor and GSM mobile phones. In IET International Conference onWireless, Mobile and Multimedia Networks, 6-9November 2006. IEEE, 1-4.Google Scholar

  • [23] Calcagnini, G., Floris, M., Censi, F., Cianfanelli, P., Scavino, G., Bartolini, P. (2007). Electromagnetic interference with infusion pumps from GSM mobile phones. Health Physics, 90, 357-360.Google Scholar

  • [24] Calcagnini, G., Censi, F., Triventi, M., Mattei, E., LoSterzo, R., Marchetta, E., Bartolini, P. (2008).Electromagnetic interference to infusion pumps.Update2008 from GSM mobile phones. In Engineering in Medicine and Biology Society (EMBS2008) : 30th Annual International Conference of theIEEE, 20-25 August 2008. IEEE, 4503-4506.Google Scholar

  • [25] Shaw, C.I., Kacmarek, R.M., Hampton, R.L., Riggi, V., El Masry, A., Cooper, J.B. et al. (2004). Cellular phone interference with the operation of mechanical ventilators. Critical Care Medicine, 32 (4), 928-931.CrossrefGoogle Scholar

  • [26] Barbaro, V., Bartolini, P., Benassi, M., Di Nallo, A.M., Reali, L., Valsecchi, S. (2000). Electromagnetic interference by GSM cellular phones and UHF radios with intensive-care and operating-room ventilators.Biomedical Instrumentation & Technology, 34 (5), 361-369.Google Scholar

  • [27] Medical Devices Agency. (1997). Electromagneticcompatibility of medical devices with mobilecommunications. London, UK: Department of Health.Google Scholar

  • [28] Hahn, I.H., Schnadower, D., Dakin, R.J., Nelson, L.S. (2005). Cellular phone interference as a cause of acute epinephrine poisoning. Annals of EmergencyMedicine, 46 (3), 298-299.Google Scholar

  • [29] Aziz, O., Sheikh, A., Paraskeva, P., Darzi, A. (2003).Use of mobile phones in hospital: Time to lift the ban? The Lancet, 361 (9359), 788.Google Scholar

  • [30] Soto, R.G., Chu, L.F., Goldman, J.M., Rampil, I.J., Ruskin, K.J. (2006). Communication in critical care environments: Mobile phones improve patient care.Anesthesia and Analgesia, 102 (2), 535-541.Google Scholar

  • [31] Morrissey, J.J. (2004). Mobile phones in the hospital: Improved mobile communication and mitigation of EMI concerns can lead to an overall benefit to healthcare. Health Physics, 87, 82-88.CrossrefGoogle Scholar

  • [32] Lota, A.S. (2011). ECG interference from the iPhone.Emergency Medicine Journal, 28 (10), 906-907.CrossrefWeb of ScienceGoogle Scholar

  • [33] Knight, B.P., Pelosi, F., Michaud, G.F., Strickberger, S.A., Morady, F. (1999). Clinical consequences of electrocardiographic artifact mimicking ventricular tachycardia. New England Journal of Medicine, 341 (17), 1270-1274.Google Scholar

  • [34] Colak, Z.A., Helhel, S., Basyigit, I., Ozen, S. (2010).Safety distance for medical equipments based on 2G and 3G mobile systems. In 15th National BiomedicalEngineering Meeting (BIYOMUT), 21-24 April 2010.IEEE, 1-3.Google Scholar

  • [35] European Telecommunications Standards Institute. (1996). Digital cellular telecommunications system;Full rate speech; Discontinuous Transmission (DTX)for full rate speech traffic channels (GSM 06.31version 5.0.0). ETS 300 964.Google Scholar

  • [36] European Telecommunications Standards Institute. (1997). Digital cellular telecommunications system;Half rate speech; Discontinuous Transmission (DTX)for half rate speech traffic channels (GSM 06.41version 5.0.1). ETS 300 972.Google Scholar

  • [37] European Telecommunications Standards Institute. (1997). Digital cellular telecommunications system(Phase 2); Discontinuous Transmission (DTX) forEnhanced Full Rate (EFR) speech traffic channels(GSM 06.81 version 4.0.1). ETS EN 301 248 V4.0.1.Google Scholar

  • [38] European Telecommunications Standards Institute. (2001). Digital cellular telecommunications system(Phase 2+); Discontinuous Transmission (DTX) forAdaptive Multi-Rate (AMR) speech traffic channels(GSM 06.93 version 7.2.1 Release 1998). ETS EN 301 707 V7.1.1.Google Scholar

  • [39] Fereniec, M., Kania, M., Maniewski, R. (2007).Optimal leads selection for repolarization phase analysis. Measurement Science Review, 2 (1), 1-4.Google Scholar

  • [40] Fereniec, M., Stix, G., Kania, M., Mroczka, T., Janusek, D., Maniewski, R. (2011). Risk assessment of ventricular arrhythmia using new parameters based on high resolution body surface potential mapping.Medical Science Monitor, 17 (3), MT26-MT33.CrossrefWeb of ScienceGoogle Scholar

  • [41] SippensGroenewegen, A., Spekhorst, H., van Hemel, N.M., Kingma, J.H., Hauer, R.N., de Bakker, J.M. et al. (1993). Localization of the site of origin of postinfarction ventricular tachycardia by endocardial pace mapping. Body surface mapping compared with the 12-lead electrocardiogram. Circulation, 88 (5 Pt 1), 2290-2306.CrossrefGoogle Scholar

  • [42] Clifford, G.D. (2006). ECG statistics, noise, artifacts, and missing data. In Advanced Methods and Tools forECG Data Analysis. Artech House.Google Scholar

  • [43] Sandwell, D.T. (1987). Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data.Geophysical Research Letters, 2, 139-142. Google Scholar

About the article

Published Online: 2013-11-02

Published in Print: 2013-10-01


Citation Information: Measurement Science Review, ISSN (Online) 1335-8871, DOI: https://doi.org/10.2478/msr-2013-0035.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Periyasamy M. Mariappan, Dhanasekaran R. Raghavan, Shady H.E. Abdel Aleem, and Ahmed F. Zobaa
Journal of Advanced Research, 2016, Volume 7, Number 5, Page 727

Comments (0)

Please log in or register to comment.
Log in