Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Measurement Science Review

The Journal of Institute of Measurement Science of Slovak Academy of Sciences

6 Issues per year


IMPACT FACTOR 2016: 1.344

CiteScore 2016: 1.88

SCImago Journal Rank (SJR) 2016: 0.495
Source Normalized Impact per Paper (SNIP) 2016: 1.419

Open Access
Online
ISSN
1335-8871
See all formats and pricing
More options …
Volume 16, Issue 6 (Dec 2016)

Issues

Measurement of Transient Permeability of Sp2/0 Myeloma Cells: Flow Cytometric Study

Vitalij Novickij
  • Corresponding author
  • Institute of High Magnetic Fields, Faculty of Electronics, Vilnius Gediminas Technical University, Naugarduko g. 41, 03227, Vilnius, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Irutė Girkontaitė
  • State Research Institute Centre for Innovative Medicine, Department of Immunology, Santariškių g. 5, 08406, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Audrius Grainys
  • Institute of High Magnetic Fields, Faculty of Electronics, Vilnius Gediminas Technical University, Naugarduko g. 41, 03227, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Auksė Zinkevičienė
  • State Research Institute Centre for Innovative Medicine, Department of Immunology, Santariškių g. 5, 08406, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eglė Lastauskienė
  • Department of Microbiology and Biotechnology, Vilnius University, Sauletekio al. 9, 10221, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jurgita Švedienė
  • Department of Biodeterioration Research, Nature Research Centre, Akademijos str. 2, 08412, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Algimantas Paškevičius
  • Department of Biodeterioration Research, Nature Research Centre, Akademijos str. 2, 08412, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Svetlana Markovskaja / Jurij Novickij
  • Institute of High Magnetic Fields, Faculty of Electronics, Vilnius Gediminas Technical University, Naugarduko g. 41, 03227, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-13 | DOI: https://doi.org/10.1515/msr-2016-0038

Abstract

Electroporation is an electric field induced phenomenon occurring when the permeability of the cell membrane is increased due to the excess of critical transmembrane potential. Fluorescent dye assays are frequently used for evaluation of the permeabilization rate, however, the protocols vary, which negatively affects the repeatability of the results. In this work we have designed experiments to investigate the protocols and threshold concentrations of the Propidium Iodide (PI) and YO-PRO-1 (YP) fluorescent dyes for evaluation of mammalian cell permeabilization induced by electroporation. The Sp2/0 mouse myeloma cells were used and the bursts of 100 μs × 8 electrical pulses of 0.8-2 kV/cm were applied. It has been shown that the dye concentration has an influence on the detectable permeabilization, and the concentrations below 30 μM for PI and 1 μM for YP should be avoided for measurement of electropermeabilization efficacy due to unreliable fluorescence signals. Further, based on the experimental data, the permeabilization curve for the Sp2/0 myeloma cells in the 0.8-2 kV/cm range has been presented.

Keywords: Electroporation; BD FACS Calibur; Amnis FlowSight; Sp2/0 myeloma cells

References

  • [1] Gehl, J. (2003). Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiologica Scandinavica, 177 (4), 437-447.Google Scholar

  • [2] Kotnik, T., Kramar, P., Pucihar, G., Miklavcic, D., Tarek, M. (2012). Cell membrane electroporation - Part 1: The phenomenon. IEEE Electrical Insulation Magazine, 28 (5), 14-23.CrossrefWeb of ScienceGoogle Scholar

  • [3] Yarmush, M.L., Golberg, A., Serša, G., Kotnik, T., Miklavčič, D. (2014). Electroporation-based technologies for medicine: Principles, applications, and challenges. Annual Review of Biomedical Engineering, 16 (1), 295-320.CrossrefWeb of ScienceGoogle Scholar

  • [4] Subhra, T., Wang, P., Gang, F. (2013). Electroporation based drug delivery and its applications. In Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies. InTech, 61-98.Google Scholar

  • [5] Haberl, S., Miklavcic, D., Sersa, G., Frey, W., Rubinsky, B. (2013). Cell membrane electroporation - Part 2: The applications. IEEE Electrical Insulation Magazine, 29 (1), 29-37.Web of ScienceCrossrefGoogle Scholar

  • [6] Jiang, C., Davalos, R.V., Bischof, J.C. (2015). A review of basic to clinical studies of irreversible electroporation therapy. IEEE Transactions on Biomedical Engineering, 62 (1), 4-20.Web of ScienceCrossrefGoogle Scholar

  • [7] Teissié, J., Golzio, M. (2014). Electropermeabilization of the cell membrane. In Encyclopedia of Applied Electrochemistry. Springer, 773-782.Google Scholar

  • [8] Zou, Y., Wang, C., Peng, R., Wang, L., Hu, X. (2015). Theoretical analyses of cellular transmembrane voltage in suspensions induced by high-frequency fields. Bioelectrochemistry, 102, 64-72.Web of ScienceGoogle Scholar

  • [9] Spugnini, E.P., Melillo, A., Quagliuolo, L., Boccellino, M., Vincenzi, B., Pasquali, P. et al. (2014). Definition of novel electrochemotherapy parameters and validation of their in vitro and in vivo effectiveness. Journal of Cellular Physiology, 229 (9), 1177-1181.Web of ScienceGoogle Scholar

  • [10] Blumrosen, G., Abazari, A., Golberg, A., Tonner, M., Yarmush, M.L. (2014). Efficient procedure and methods to determine critical electroporation parameters. In 2014 IEEE 27th International Symposium on Computer-Based Medical Systems. IEEE, 314-318.Google Scholar

  • [11] Pucihar, G., Krmelj, J., Reberšek, M., Napotnik, T.B., Miklavčič, D., Reberšek, M. et al. (2011). Equivalent pulse parameters for electroporation. IEEE Transactions on Biomedical Engineering, 58 (11), 3279-3288.CrossrefWeb of ScienceGoogle Scholar

  • [12] Pucihar, G., Kotnik, T., Kandušer, M., Miklavčič, D. (2001). The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry, 54 (2), 107-15.CrossrefGoogle Scholar

  • [13] Rols, M.P., Teissié, J. (1990). Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophysical Journal, 58 (5), 1089-1098.Google Scholar

  • [14] Vernier, P.T., Sun, Y., Gundersen, M.A., Vernier, P., Sun, Y., Marcu, L. et al. (2006). Nanoelectropulsedriven membrane perturbation and small molecule permeabilization. BMC Cell Biology, 7 (1), 37.CrossrefGoogle Scholar

  • [15] Napotnik, T.B., Wu, Y.-H., Gundersen, M.A., Miklavčič, D., Vernier, P.T. (2012). Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics, 33 (3), 257-264.Web of ScienceCrossrefGoogle Scholar

  • [16] Djuzenova, C.S., Zimmermann, U., Frank, H., Sukhorukov, V.L., Richter, E., Fuhr, G. (1996). Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochimica et Biophysica Acta - Biomembranes, 1284 (2), 143-152.Google Scholar

  • [17] Sadik, M.M., Li, J., Shan, J.W., Shreiber, D.I., Lin, H. (2013). Quantification of propidium iodide delivery using millisecond electric pulses: Experiments. Biochimica et Biophysica Acta - Biomembranes, 1828 (4), 1322-1328.Web of ScienceGoogle Scholar

  • [18] Demiryurek, Y., Nickaeen, M., Zheng, M., Yu, M., Zahn, J.D., Shreiber, D.I. et al. (2015). Transport, resealing, and re-poration dynamics of two-pulse electroporation-mediated molecular delivery. Biochimica et Biophysica Acta - Biomembranes, 1848 (8), 1706-1714.Web of ScienceGoogle Scholar

  • [19] Gowrishankar, T.R., Pliquett, U., Lee, R.C. (1999). Dynamics of membrane sealing in transient electropermeabilization of skeletal muscle membranes. Annals of the New York Academy of Sciences, 888 195-210.Google Scholar

  • [20] Saulis, G. (2010). Kinetics of pore formation and disappearance in the cell during electroporation. In Advanced Electroporation Techniques in Biology and Medicine. CRC Press, 213-237.Google Scholar

  • [21] Lamberti, P., Romeo, S., Sannino, A., Zeni, L., Zeni, O. (2015). The role of pulse repetition rate in nsPEFinduced electroporation: A biological and numerical investigation. IEEE Transactions on Biomedical Engineering, 62 (9), 2234-2243.CrossrefGoogle Scholar

  • [22] Kulbacka, J., Pucek, A., Wilk, K.A., Dubińska- Magiera, M., Rossowska, J., Kulbacki, M. et al. (2016). The effect of millisecond pulsed electric fields (msPEF) on intracellular drug transport with negatively charged large nanocarriers made of solid lipid nanoparticles (SLN): In vitro study. The Journal of Membrane Biology, 249 (5), 645-661.Google Scholar

  • [23] Ford, W.E., Ren, W., Blackmore, P.F., Schoenbach, K.H., Beebe, S.J. (2010). Nanosecond pulsed electric fields stimulate apoptosis without release of proapoptotic factors from mitochondria in B16f10 melanoma. Archives of Biochemistry and Biophysics, 497 (1-2), 82-89.Google Scholar

  • [24] Wezgowiec, J., Derylo, M.B., Teissie, J., Orio, J., Rols, M.-P., Kulbacka, J. et al. (2013). Electric fieldassisted delivery of photofrin to human breast carcinoma cells. The Journal of Membrane Biology, 246 (10), 725-735.Google Scholar

  • [25] Novickij, V., Grainys, A., Butkus, P., Tolvaišienė, S., Švedienė, J., Paškevičius, A., Novickij, J. (2016). High-frequency submicrosecond electroporator. Biotechnology and Biotechnological Equipment, 30 (3), 607-613.Google Scholar

  • [26] Michie, J., Janssens, D., Cilliers, J., Smit, B.J., Böhm, L. (2000). Assessment of electroporation by flow cytometry. Cytometry, 41, 96-101.Google Scholar

  • [27] Bier, M., Hammer, S.M., Canaday, D.J., Lee, R.C. (1999). Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells. Bioelectromagnetics, 20 (3), 194-201.CrossrefGoogle Scholar

  • [28] Lazniewska, J., Janaszewska, A., Miłowska, K., Caminade, A.M., Mignani, S., Katir, N., El Kadib, A., Bryszewska, M., Majoral, J.P., Gabryelak, T., Klajnert-Maculewicz, B. (2013). Promising lowtoxicity of viologen-phosphorus dendrimers against embryonic mouse hippocampal cells. Molecules, 18 (10), 12222-12240.CrossrefGoogle Scholar

About the article

Received: 2016-09-09

Accepted: 2016-11-25

Published Online: 2016-12-13

Published in Print: 2016-12-01


Citation Information: Measurement Science Review, ISSN (Online) 1335-8871, DOI: https://doi.org/10.1515/msr-2016-0038.

Export Citation

© by Vitalij Novickij. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in