Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Measurement Science Review

The Journal of Institute of Measurement Science of Slovak Academy of Sciences

6 Issues per year


IMPACT FACTOR 2016: 1.344

CiteScore 2016: 1.88

SCImago Journal Rank (SJR) 2016: 0.495
Source Normalized Impact per Paper (SNIP) 2016: 1.419

Open Access
Online
ISSN
1335-8871
See all formats and pricing
More options …
Volume 18, Issue 3

Issues

Experimental Models and Correlations between Surface Parameters after Slide Diamond Burnishing

Mieczyslaw Korzynski
  • Corresponding author
  • Centre for Innovative Technologies, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kazimiera Dudek / Arkadiusz Palczak / Bartosz Kruczek / Paweł Kocurek
  • Mechanical Engineering and Aeronautics Faculty, Rzeszow University of Technology, W. Pola 2, 35-959 Rzeszow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-12 | DOI: https://doi.org/10.1515/msr-2018-0018

Abstract

In the paper the set of representative parameters for a comprehensive assessment of the surface texture status after slide burnishing has been proposed. The analysis of correlations between the parameters of the surface texture, obtained by slide diamond burnishing of 317Ti steel has been performed. Correlations have been determined and several groups of surface texture parameters with strong mutual correlations (also parameters uncorrelated with the other) have been selected. For both groups of parameters - representative and uncorrelated - experimental mathematical relations defining influences of the input parameters of slide diamond burnishing on the surface texture parameters have been developed. Also, interaction effects for individual parameters of this finishing process have been disclosed. It has been found that by appropriate selection of input conditions of the slide diamond burnishing process, it is possible to obtain a wide range of states of the surface texture.

Keywords: Surface texture; finishing; slide diamond burnishing; 317Ti

References

  • [1] Oczos, K.E., Liubimov, V. (2003). Struktura geometryczna powierzchni [Surface Geometric Structure]. Rzeszow, Poland: Rzeszow Technical University Publishing House. (in Polish)Google Scholar

  • [2] Berglund, J., Brown C.A., Rose, B.G., Bay, N. (2010). Milled die steel surface roughness correlation with steel sheet friction. CIRP Annals - Manufacturing Technology, 59, 577-580.Google Scholar

  • [3] Sedlacek, M., Podgornik, B., Vizintin, J. (2012). Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribology International, 48, 102-112.Google Scholar

  • [4] Stout, K., Davis, E.I., Sullivan, P.I. (1990). Atlas of Machined Surfaces. Chapman and Hall.Google Scholar

  • [5] Stout, K.J., Dong, W.P., Mainsah, E. (1993). A proposal for standardization of assessment of threedimensional micro-topography - Part 1. Surface digitisation and parametric characterisation. University of Birmingham.Google Scholar

  • [6] Thomas, T.R. (1999). Rough Surfaces. Imperial College Press.Google Scholar

  • [7] Niemczewska-Wójcik, M. (2017). Multi-sensor measurements of titanium alloy surface texture formed at subsequent operations of precision machining process. Measurement, 96, 8-17.Google Scholar

  • [8] Low, K.O. (2011). Surface characteristics modification of polyoxymethylene and polyurethane using burnishing. Tribology Transactions, 54 (1), 96-103.Google Scholar

  • [9] Yusof, N.F.M., Ripin, Z.M. (2014). Analysis of surface parameters and vibration of roller bearing. Tribology Transactions, 57 (4), 715-729.Google Scholar

  • [10] Coutinho, R., Marinescu, I.D. (2005). Methodology to compare 3-D and 2-D parameters for the optimization of hard turned surfaces. Machining Science and Technology, 9 (3), 383-409.Google Scholar

  • [11] Wang, G., Zhou, X., Meng, G., Yang, X. (2017). Modeling surface roughness for polishing process based on abrasive cutting and probability theory. Machining Science and Technology, 22 (1), 86-98.Google Scholar

  • [12] Grzesik, W. (2016). Prediction of the functional performance of machined components based on surface topography: State of the art. Journal of Materials Engineering and Performance, 25 (10), 4460-4468.Google Scholar

  • [13] Wagner, J.J., Jenson, A.D., Sundararajan, S. (2017). The effect of contact pressure and surface texture on running-in behavior of case carburized steel under boundary lubrication. Wear, 376-377, 851-857.Google Scholar

  • [14] Krzyzak, Z., Pawlus, P. (2006). ‘Zero-wear’ of piston skirt surface topography. Wear, 260, 554-561.Google Scholar

  • [15] Profito, F.J., Vlădescu, S-C., Reddyhoff, T., Dini, D. (2017). Transient experimental and modelling studies of laser-textured microgrooved surfaces with a focus on piston-ring cylinder liner contacts. Tribology International, 113, 125-136.Google Scholar

  • [16] Khelifi, C., Do, M.T., Kane, M., Adenot Meyer, M. (2017). Wear and wet friction of steel tracks for rubber-tired metros. Wear, 376-377, 1912-1918.Google Scholar

  • [17] Niemczewska-Wójcik, M. (2016). Multi-sensor measurements of titanium alloy surface texture formed at subsequent operations of precision machining process. Measurement, 96, 8-17.Google Scholar

  • [18] Kang, Y.S., Hager, C.H., Evans, R.D. (2015). Effects of skewed surface textures on lubricant film thickness and traction. Tribology Transactions, 58 (3), 397-406.Google Scholar

  • [19] Gherca, A., Fatu, A., Hajjam, M., Maspeyrot, P. (2013). Influence of surface geometry on the hydrodynamic performances of parallel bearings in transient flow conditions. Tribology Transactions, 56 (6), 953-967.Google Scholar

  • [20] Sedlaček, M., Gregorčič, P., Podgornik, B. (2017). Use of the roughness parameters Ssk and Sku to control friction-a method for designing surface texturing. Tribology Transactions, 60 (2), 260-266.Google Scholar

  • [21] Wang, L., Ouyang, W., Gao, W., Xu, B. (2017). Instrumental evaluation of fabric abrasive wear using 3D surface images. Journal of the Textile Institute, 108 (5), 846-851.Google Scholar

  • [22] Lu, W., Zhang, G., Liu, X., Zhou, L., Chen, L., Jiang, X. (2014). Prediction of surface topography at the end of sliding running-in wear based on areal surface parameters. Tribology Transactions, 57 (3), 553-560.Google Scholar

  • [23] Masuko, M., Aoki, S., Suzuki, A. (2005). Influence of lubricant additive and surface texture on the sliding friction characteristics of steel under varying speeds ranging from ultralow to moderate. Tribology Transactions, 48 (3), 289-298.Google Scholar

  • [24] Eiss, N.S., Bayraktaroglu, M.M. (1980). The effect of surface roughness on the wear of low-density polyethylene. ASLE Transactions, 23 (3), 269-278.Google Scholar

  • [25] Shi, X., Wang, L., Qin, F. (2016). Relative fatigue life prediction of high-speed and heavy-load ball bearing based on surface texture. Tribology International, 10, 364-374.Google Scholar

  • [26] Trauth, D., Klocke, F., Welling, D., Terhorst, M., Mattfeld, P., Klink, A. (2016). Investigation of the surface integrity and fatigue strength of Inconel718 after wire EDM and machine hammer. International Journal of Material Forming, 9 (5), 635-651.Google Scholar

  • [27] Qi, Q., Li, T., Scott, P.J., Jiang, X. (2015). A correlational study of areal surface texture parameters on some typical machined surfaces. Procedia CIRP, 27, 149-154.Google Scholar

  • [28] Rosen, B.G., Anderberg, C., Ohlsson, R. (2008). Parameter correlation study of cylinder liner roughness for production and quality control. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222, 1475-1487.Google Scholar

  • [29] Das, J., Linke, B. (2017). Evaluation and systematic selection of significant multi-scale surface roughness parameters (SRPs) as process monitoring index. Journal of Materials Processing Technology, 244, 157-165.Google Scholar

  • [30] Franco, L.A., Sinatora, A. (2015). 3D surface parameters (ISO 25178-2): Actual meaning of Spk and its relationship to Vmp. Precision Engineering, 40, 106-111.Google Scholar

  • [31] Korzynski, M. (2013). Slide diamond burnishing. In Nonconventional Finishing Technologies. Warsaw, Poland: Polish Scientific Publishers PWN.Google Scholar

  • [32] Korzynski, M. (2017). Metodyka eksperymentu [Methodology of Experiment]. Warsaw, Poland: Science Publishing Home. (in Polish)Google Scholar

  • [33] Korzynski, M., Lubas, J., Swirad, S., Dudek, K. (2011). Surface layer characteristics due to slide diamond burnishing with a cylindrical-ended tool. Journal of Materials Processing Technology, 211 (1), 84-94.Google Scholar

About the article

Received: 2017-12-12

Accepted: 2018-05-14

Published Online: 2018-06-12

Published in Print: 2018-06-01


Citation Information: Measurement Science Review, Volume 18, Issue 3, Pages 123–129, ISSN (Online) 1335-8871, DOI: https://doi.org/10.1515/msr-2018-0018.

Export Citation

© 2018 Mieczyslaw Korzynski, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in