Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Measurement Science Review

The Journal of Institute of Measurement Science of Slovak Academy of Sciences

6 Issues per year


IMPACT FACTOR 2017: 1.345
5-year IMPACT FACTOR: 1.253



CiteScore 2017: 1.61

SCImago Journal Rank (SJR) 2017: 0.441
Source Normalized Impact per Paper (SNIP) 2017: 0.936

Open Access
Online
ISSN
1335-8871
See all formats and pricing
More options …
Volume 18, Issue 6

Issues

Time-Efficient Perfusion Imaging Using DCE- and DSC-MRI

Ondřej Macíček
  • Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská, 62/147, 612 00, Brno, Czech Republic
  • Department of Biomedical Engineering, The Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická, 3082/12, 616 00, Brno,Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Radovan Jiřík
  • Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská, 62/147, 612 00, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Mikulka
  • Department of Theoretical and Experimental Electrical Engineering, The Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická, 3082/12, 616 00, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michal Bartoš
  • Institute of Information Theory and Automation of the Czech Academy of Sciences, Pod Vodárenskou věží, 4, 182 08, Prague 8, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Šprláková-Puková
  • Department of Radiology and Nuclear Medicine, The University Hospital Brno and Masaryk University, Jihlavská, 340/20, 625 00, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miloš Keřkovský
  • Department of Radiology and Nuclear Medicine, The University Hospital Brno and Masaryk University, Jihlavská, 340/20, 625 00, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zenon Starčuk jr.
  • Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská, 62/147, 612 00, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karel Bartušek
  • Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská, 62/147, 612 00, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Torfinn Taxt
  • The Department of Biomedicine, Faculty of Medicine, University of Bergen, Jonas Lies vei, 91, 5009, Bergen, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-30 | DOI: https://doi.org/10.1515/msr-2018-0036

Abstract

Dynamic contrast enhanced MRI (DCE-MRI) and dynamic susceptibility contrast MRI (DSC-MRI) are perfusion imaging techniques used mainly for clinical and preclinical measurement of vessel permeability and capillary blood flow, respectively. It is advantageous to apply both methods to exploit their complementary information about the perfusion status of the tissue. We propose a novel acquisition method that combines advantages of the current simultaneous and sequential acquisition. The proposed method consists of a DCE-MRI acquisition interrupted by DSC-MRI acquisition. A new method for processing of the DCE-MRI data is proposed which takes the interleaved acquisition into account. Analysis of both the DCE- and DSC-MRI data is reformulated so that they are approximated by the same pharmacokinetic model (constrained distributed capillary adiabatic tissue homogeneity model). This provides a straightforward evaluation of the methodology as some of the estimated DCE- and DSC-MRI perfusion parameters should be identical. Evaluation on synthetic data showed an acceptable precision and no apparent bias introduced by the interleaved character of the DCE-MRI acquisition. Intravascular perfusion parameters obtained from clinical glioma data showed a fairly high correlation of blood flow estimates from DCE- and DSC-MRI, however, an unknown scaling factor was still present mainly because of the tissue-specific r2* relaxivity. The results show validity of the proposed acquisition method. They also indicate that simultaneous processing of both DCE- and DSC-MRI data with joint estimation of some perfusion parameters (included in both DCE- and DSC-MRI) might be possible to increase the reliability of the DCE- and DSC-MRI methods alone.

Keywords: Perfusion imaging; contrast agents; brain tumors; DCE-MRI; DSC-MRI

References

  • [1] Jerosch-Herold, M. (2010). Quantification of myocardial perfusion by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 12(1), 57.Google Scholar

  • [2] Jackson, A., Buckley, D.L., Parker, G.J.M. (eds.) (2004). Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology (Medical Radiology). Springer.Google Scholar

  • [3] Tofts, P. (ed.) (2004). Quantitative MRI of the Brain: Measuring Changes Caused by Disease. Wiley.Google Scholar

  • [4] Willats, L., Calamante, F. (2013). The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI. NMR in Biomedicine, 26(8), 913–931.Google Scholar

  • [5] Calamante, F., Gadian, D., Connelly, A. (2002). Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: Assumptions, limitations, and potential implications for clinical use. Stroke, 33(4), 1146–1151.Google Scholar

  • [6] Koh, T.S., Bisdas, S., Koh, D.M., Thng, C.H. (2011). Fundamentals of tracer kinetics for dynamic contrastenhanced MRI. Journal of Magnetic Resonance Imaging, 34(6), 1262–1276.Google Scholar

  • [7] Sourbron, S.P., Buckley, D.L. (2013). Classic models for dynamic contrast-enhanced MRI. NMR in Biomedicine, 26(8), 1004–1027.Google Scholar

  • [8] Tofts, P., Brix, G., Buckley, D., et al. (1999). Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: Standardized quantities and symbols. Journal of Magnetic Resonance Imaging, 10(3), 223–232.Google Scholar

  • [9] Tofts, P.S. (1997). Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. Journal of Magnetic Resonance Imaging, 7(1), 91–101.Google Scholar

  • [10] Brix, G., Kiessling, F., Lucht, R., Darai, S., Wasser, K., Delorme, S., Griebel, J. (2004). Microcirculation and microvasculature in breast tumors: Pharmacokinetic analysis of dynamic MR image series. Magnetic Resonance in Medicine, 52, 420–429.Google Scholar

  • [11] St Lawrence, K.S., Lee, T.Y. (1998). An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. Journal of Cerebral Blood Flow and Metabolism, 18(12), 1365–1377.Google Scholar

  • [12] Koh, T.S., Zeman, V., Darko, J., et al. (2001). The inclusion of capillary distribution in the adiabatic tissue homogeneity model of blood flow. Physics in Medicine and Biology, 46(5), 1519–1538.Google Scholar

  • [13] Bartoš, M., Jiřík, R., Kratochvíla, J., Standara, M., Starčuk Jr., Z., Taxt, T. (2014). The precision of DCEMRI using the tissue homogeneity model with continuous formulation of the perfusion parameters. Magnetic Resonance Imaging, 32(5), 505–513.Google Scholar

  • [14] Østergaard, L. (2005). Principles of cerebral perfusion imaging by bolus tracking. Journal of Magnetic Resonance Imaging, 22(6), 710–717.Google Scholar

  • [15] Essig, M., Shiroishi, M.S., Nguyen, T.B., et al. (2013). Perfusion MRI: the five most frequently asked technical questions. American Journal of Roentgenology, 200(1), 24–34.Google Scholar

  • [16] Donahue, K.M., Krouwer, H.G., Rand, S.D., Pathak, A.P., Marszalkowski, C.S., Censky, S.C., Prost, R.W. (2000). Utility of simultaneously acquired gradientecho and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magnetic Resonance in Medicine, 43(6), 845–853.Google Scholar

  • [17] Pike, M.M., Stoops, C.N., Langford, C.P., Akella, N.S., Nabors, L.B., Gillespie, G.Y. (2009). High-resolution longitudinal assessment of flow and permeability in mouse glioma vasculature: Sequential small molecule and SPIO dynamic contrast agent MRI. Magnetic Resonance in Medicine, 61(3), 615–625.Google Scholar

  • [18] Sourbron, S., Heilmann, M., Biffar, A., Walczak, C., Vautier, J., Volk, A., Peller, M. (2009). Bolus-tracking MRI with a simultaneous T1- and T2*-measurement. Magnetic Resonance in Medicine, 62(3), 672–681.Google Scholar

  • [19] Schmiedeskamp, H., Andre, J.B., Straka, M., et al. (2013). Simultaneous perfusion and permeability measurements using combined spin- and gradient-echo MRI. Journal of Cerebral Blood Flow and Metabolism, 33(5), 732–743.Google Scholar

  • [20] Heilmann, M.,Walczak, C., Vautier, J., et al. (2007). Simultaneous dynamic T1 and T2* measurement for AIF assessment combined with DCE MRI in a mouse tumor model. Magnetic Resonance Materials in Physics, Biology and Medicine, 20(4), 193–203.Google Scholar

  • [21] Sourbron, S., Heilmann, M., Walczak, C., Vautier, J., Schad, L.R., Volk, A. (2013). T2*-relaxivity contrast imaging: First results. Magnetic Resonance in Medicine, 69(5), 1430–1437.Google Scholar

  • [22] Schmiedeskamp, H., Straka, M., Newbould, R.D., et al. (2012). Combined spin- and gradient-echo perfusionweighted imaging. Magnetic Resonance in Medicine, 68, 30–40.Google Scholar

  • [23] Lüdemann, L., Warmuth, C., Plotkin, M., Förschler, A., Gutberlet, M., Wust, P., Amthauer, H. (2009). Brain tumor perfusion: Comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labeling, and H2(15)O positron emission tomography. European Journal of Radiology, 70(3), 465–474.Google Scholar

  • [24] Macíček, O., Jiřík, R., Bartoš, M., et al. (2013). Interleaved DCE and DSC-MRI. In Trends in Biomedical Engineering, Košice, Slovak Republic: Technical University, 177–180.Google Scholar

  • [25] Macíček, O., Jiřík, R., Bartoš, M., et al. (2013). Interleaved Time-Effective DCE-MRI. Magnetic Resonance Materials in Physics, Biology and Medicine, 26 (Suppl. 1), 204–205.Google Scholar

  • [26] Kratochvíla, J., Jiřík, R., Bartoš, M., Standara, M., Starčuk Jr., Z., Taxt, T. (2016). Distributed capillary adiabatic tissue homogeneity model in parametric multichannel blind AIF estimation using DCE-MRI. Magnetic Resonance in Medicine, 75(3), 1355–1365.Google Scholar

  • [27] Li, K.-L., Zhu, X. P., Waterton, J., Jackson, A. (2000). Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. Journal of Magnetic Resonance Imaging, 12(2), 347–357.Google Scholar

  • [28] Parker, G.J.M., Roberts, C., Macdonald, A., et al. (2006). -derived functional form for a populationaveraged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine, 56(5), 993–1000.Google Scholar

  • [29] Taxt, T., Jiřík, R., Rygh, C.B., et al. (2012). Singlechannel blind estimation of arterial input function and tissue impulse response in DCE-MRI. IEEE Transactions on Biomedical Engineering, 59(4), 1012–1021.Google Scholar

  • [30] Mouridsen, K., Christensen, S., Gyldensted, L., Østergaard, L. (2006). Automatic selection of arterial input function using cluster analysis. Magnetic Resonance in Medicine, 55(3), 524–531.Google Scholar

  • [31] Madsen, M.T. (1992). A simplified formulation of the gamma variate function. Physics in Medicine and Biology, 37(7), 1597–1600.Google Scholar

  • [32] Grüner, R., Bjørnarå, B.T., Moen, G., Taxt, T. (2006). Magnetic resonance brain perfusion imaging with voxel-specific arterial input functions. Journal of Magnetic Resonance Imaging, 23(3), 273–284.Google Scholar

  • [33] Kershaw, L. E., Buckley, D. L. (2006). Precision in measurements of perfusion and microvascular permeability with T1-weighted dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine, 56(5), 986–992.Google Scholar

  • [34] Schabel, M. C. (2012). A unified impulse response model for DCE-MRI. Magnetic Resonance in Medicine, 68(5), 1632–1646.Google Scholar

  • [35] Liu, G., Sobering, G., Duyn, J., Moonen, C.T.W. (1993). A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO). Magnetic Resonance in Medicine, 30(6), 764–768.Google Scholar

  • [36] Pedersen, M., Klarhöfer, M., Christensen, S. r., Ouallet, J.-C., Østergaard, L., Dousset, V., Moonen, C. (2004). Quantitative cerebral perfusion using the PRESTO acquisition scheme. Journal of Magnetic Resonance Imaging, 20(6), 930–940.Google Scholar

  • [37] Boxerman, J.L., Hamberg, L.M., Rosen, B.R., Weisskoff, R.M. (1995). MR contrast due to intravascular magnetic susceptibility perturbations. Magnetic Resonance in Medicine, 34(4), 555–566.Google Scholar

  • [38] Kjølby, B.F., Østergaard, L., Kiselev, V.G. (2006). Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magnetic Resonance in Medicine, 56(1), 187–197.Google Scholar

  • [39] Lammertsma, A., Brooks, D.J., Beaney, R.P., et al. (1984). In vivo measurement of regional cerebral haematocrit using positron emission tomography. Journal of Cerebral Blood Flow and Metabolism, 4, 317–322.Google Scholar

  • [40] Šonka, M., Hlaváč, V., Boyle, R. (2008). Image Processing, Analysis, and Machine Vision. Thomson Learning.Google Scholar

  • [41] Bagher-Ebadian, H., Jain, R., Nejad-Davarani, S.P., et al. (2012). Model selection for DCE-T1 studies in glioblastoma. Magnetic Resonance in Medicine, 68(1), 241–251.Google Scholar

  • [42] Harrer, J.U., Parker, G.J.M., Haroon, H., et al. (2004). Comparative study of methods for determining vascular permeability and blood volume in human gliomas. Journal of Magnetic Resonance Imaging, 20, 748–757.Google Scholar

  • [43] Kratochvíla, J., Jiřík, R., Starčuk Jr., Z., Bartoš, M., Standara, M., Taxt, T. (2016). Using multichannel blind AIF estimation with the DCATH model to allow increased temporal sampling interval in DCE-MRI. Magnetic Resonance Materials in Physics, Biology and Medicine, 29 (Suppl. 1), 288–289.Google Scholar

About the article

Received: 2018-05-02

Accepted: 2018-10-29

Published Online: 2018-11-30

Published in Print: 2018-10-01


Citation Information: Measurement Science Review, Volume 18, Issue 6, Pages 262–271, ISSN (Online) 1335-8871, DOI: https://doi.org/10.1515/msr-2018-0036.

Export Citation

© 2018 Ondřej Macíček et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in