Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanofabrication

1 Issue per year

Open Access
Online
ISSN
2299-680X
See all formats and pricing
More options …

Nitrogen as a carrier gas for regime control in focused electron beam induced deposition

Stefan Wachter
  • Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7/1, A-1040 Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco Gavagnin
  • Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7/1, A-1040 Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heinz D. Wanzenboeck
  • Corresponding author
  • Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7/1, A-1040 Vienna, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mostafa M. Shawrav
  • Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7/1, A-1040 Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Domagoj Belić
  • Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7/1, A-1040 Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emmerich Bertagnolli
  • Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7/1, A-1040 Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-27 | DOI: https://doi.org/10.2478/nanofab-2014-0002

Abstract

This work reports on focused electron beam induced deposition (FEBID) using a custom built gas injection system (GIS) equipped with nitrogen as a gas carrier. We have deposited cobalt from Co2(CO)8, which is usually achieved by a heated GIS. In contrast to a heated GIS, our strategy allows avoiding problems caused by eventual temperature gradients along the GIS. Moreover, the use of the gas carrier enables a high control over process conditions and consequently the properties of the synthesized nanostructures. Chemical composition and growth rate are investigated by energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM), respectively. We demonstrate that the N2 flux is strongly affecting the deposit growth rate without the need of heating the precursor in order to increase its vapour pressure. Particularly, AFM volume estimation of the deposited structures showed that increasing the nitrogen resulted in an enhanced deposition rate. The wide range of achievable precursor fluxes allowed to clearly distinguish between precursor- and electron-limited regime. With the carrier-based GIS an optimized deposition procedure with regards to the desired deposition regime has been enabled

Keywords : FEBID; carrier gas; cobalt; dicobalt octacarbonyl; gas injection system; GIS; SEM; nitrogen; electron limited regime; precursor limited regime

References

  • [1] Niemier M., Bernstein G., Csaba G., Dingler A., Hu X., Kurtz S., Liu S., Nahas J., Porod W., Siddiq M., et al.,Nanomagnet logic: progress toward system-level integration, J Phys Condens Matter, 2011,23,493202.Web of ScienceCrossrefPubMedGoogle Scholar

  • [2] Martin J., Nogues J., Liu K., Vicent J., Schuller I.K.,Ordered magnetic nanostructures: fabrication and properties, J Magn Magn Mater, 2003,256,449-501.Google Scholar

  • [3] Utke I., Hoffmann P., Melngailis J.,Gas-assisted focused electron beam and ion beam processing and fabrication, J Vac Sci Technol, B, 2008,26,1197-276.CrossrefGoogle Scholar

  • [4] Hoffmann P., Utke I., Cicoira F., Dwir B., Leifer K., Kapon E., Doppelt P.,Focused Electron Beam Induced Deposition of Gold and Rhodium. MRS Proceedings, vol. 624, 2000, p. 171.Google Scholar

  • [5] Botman A., Mulders J., Hagen C.,Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective, Nanotechnology, 2009,20,372001.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [6] Chappert C., Fert A., Van Dau F.N.,The emergence of spin electronics in data storage, Nat Mat, 2007,6,813-23.CrossrefGoogle Scholar

  • [7] Allwood D.A., Xiong G., Faulkner C., Atkinson D., Petit D., Cowburn R.,Magnetic domain-wall logic, Science, 2005,309,1688-92.Google Scholar

  • [8] Serrano-Ramón L., Córdoba R., Rodríguez L.A., Magén C., Snoeck E., Gatel C., Serrano I., Ibarra M.R., De Teresa J.M.,Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition, ACS Nano, 2011,5,7781-7.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [9] Gavagnin M., Wanzenboeck H.D., Belic D., Bertagnolli E.,Synthesis of Individually Tuned Nanomagnets for Nanomagnet Logic by Direct Write Focused Electron Beam Induced Deposition, ACS Nano, 2012,7,777-84.PubMedWeb of ScienceGoogle Scholar

  • [10] Van Dorp W., Hagen C.,A critical literature review of focused electron beam induced deposition, J Appl Phys, 2008,104,081301.Web of ScienceGoogle Scholar

  • [11] Huth M., Porrati F., Schwalb C., Winhold M., Sachser R., Dukic M., Adams J., Fantner G.,Focused electron beam induced deposition: A perspective, Beilstein J Nanotechnol , 2012,3,597-619.PubMedGoogle Scholar

  • [12] Friedli V., Utke I.,Optimized molecule supply from nozzle-based gas injection systems for focused electron-and ion-beam induced deposition and etching: simulation and experiment, J Phys D: Appl Phys, 2009,42,125305.CrossrefGoogle Scholar

  • [13] Lau Y., Chee P., Thong J., Ng V.,Properties and applications of cobalt-based material produced by electron-beam-induced deposition, J Vac Sci Technol, A, 2002,20,1295-302.CrossrefGoogle Scholar

  • [14] Gavagnin M., Wanzenboeck H.D., Belic D., Shawrav M.M., Persson A., Gunnarsson K., Svedlindh P., Bertagnolli E.,Magnetic force microscopy study of shape engineered FEBID iron nanostructures, Phys Status Solidi A, 2013.Web of ScienceGoogle Scholar

  • [15] Fowlkes J.D., Randolph S.J., Rack P.D.,Growth and simulation of high-aspect ratio nanopillars by primary and secondary electroninduced deposition, J Vac Sci Technol, B, 2005,23,2825-32.CrossrefGoogle Scholar

  • [16] Nikulina E., Idigoras O., Porro J., Vavassori P., Chuvilin A., Berger A.,Origin and control of magnetic exchange coupling in between focused electron beam deposited cobalt nanostructures, Appl Phys Lett, 2013,103,123112.Google Scholar

  • [17] Hoyle P., Ogasawara M., Cleaver J., Ahmed H.,Electrical resistance of electron beam induced deposits from tungsten hexacarbonyl, Appl Phys Lett, 1993,62,3043-5.CrossrefGoogle Scholar

  • [18] Wanzenboeck H., Roediger P., Hochleitner G., Bertagnolli E., Buehler W.,Novel method for cleaning a vacuum chamber from hydrocarbon contamination, J Vac Sci Technol, A, 2010,28,1413.Web of ScienceCrossrefGoogle Scholar

  • [19] Utke I., Bret T., Laub D., Buffat P., Scandella L., Hoffmann P.,Thermal effects during focused electron beam induced deposition of nanocomposite magnetic-cobalt-containing tips, Microelectron Eng, 2004,73,553-8.Google Scholar

  • [20] Córdoba R., Fernández-Pacheco R., Fernández-Pacheco A., Gloter A., Magén C., Stéphan O., Ibarra M.R., De Teresa J.M.,Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM, Nanoscale Res Lett, 2011,6,1-6. Web of ScienceGoogle Scholar

About the article

Received: 2014-03-12

Accepted: 2014-04-11

Published Online: 2014-05-27

Published in Print: 2014-01-01


Citation Information: Nanofabrication, Volume 1, Issue 1, ISSN (Online) 2299-680X, DOI: https://doi.org/10.2478/nanofab-2014-0002.

Export Citation

© 2014 Stefan Wachter et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Javier Pablo-Navarro, Dédalo Sanz-Hernández, César Magén, Amalio Fernández-Pacheco, and José María de Teresa
Journal of Physics D: Applied Physics, 2017, Volume 50, Number 18, Page 18LT01
[2]
Javier Pablo-Navarro, César Magén, and José María de Teresa
Nanotechnology, 2016, Volume 27, Number 28, Page 285302
[3]
J M De Teresa, A Fernández-Pacheco, R Córdoba, L Serrano-Ramón, S Sangiao, and M R Ibarra
Journal of Physics D: Applied Physics, 2016, Volume 49, Number 24, Page 243003

Comments (0)

Please log in or register to comment.
Log in