Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Open Access
See all formats and pricing
More options …

FEBID fabrication and magnetic characterization of individual nano-scale and micro-scale Co structures

O. Idigoras / E. Nikulina / J. M. Porro / P. Vavassori
  • CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian, Spain,
  • Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Chuvilin
  • CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian, Spain,
  • Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Berger
Published Online: 2014-06-26 | DOI: https://doi.org/10.2478/nanofab-2014-0003


This work gives an illustration of the viability of FEBID to fabricate magnetic nano- and micro-structures and it demonstrates that by means of a combination of MOKE microscopy and MFM, one is able to analyze the size and shape effects in individual magnetic cobalt structures. With the help of our magnetic and functional study, we are able to demonstrate that by using FEBID, cobalt of uniform thickness and magnetic response can be deposited over several micron-size areas, establishing a most crucial ingredient of reliable structure and device fabrication. Furthermore, we show the suitability of FEBID to fabricate functional and complex 3-dimensional magnetic structures. The issue of unintended secondary deposits in FEBID is discussed, and a Xe-ion milling posttreatment for its removal is proposed and demonstrated as a successful pathway towards the fabrication of functionally independent magnetic nano-structures.

Keywords : nanofabrication; magnetization reversal


  • [1] Piramanayagam S. N., Srinivasan K., Recording media research for future hard disk drives, J. Magn. Magn. Mater., 2009, 321, 485–494. Web of ScienceGoogle Scholar

  • [2] Miller M. M., Prinz G. A., Cheng S.-F, Bounnak S., Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor : A model for a magnetoresistance- based biosensor, Appl. Phys. Lett., 2002, 81, 2211. CrossrefGoogle Scholar

  • [3] Allwood D. A., Xiong G., Faulkner C. C., Atkinson D., Petit D., Cowburn R. P., Magnetic domain-wall logic, Science, 2005, 309, 1688–92. Google Scholar

  • [4] Repain V., Jamet J.-P., Vernier N., Bauer M., Ferré J., Chappert C., Gierak J., Mailly D., Magnetic interactions in dot arrays with perpendicular anisotropy, J. Appl. Phys., 2004, 95, 2614. CrossrefGoogle Scholar

  • [5] Berger A., Lengsfield B., Ikeda Y., Determination of intrinsic switching field distributions in perpendicular recording media, J. Appl. Phys., 2006, 99, 08E705. Google Scholar

  • [6] Berger A., Supper N., Ikeda Y., Lengsfield B., Moser A., Fullerton E. E., Improved media performance in optimally coupled exchange spring layer media, Appl. Phys. Lett., 2008, 93, 122502. CrossrefWeb of ScienceGoogle Scholar

  • [7] Hovorka O., Liu Y., Dahmen K. A., Berger A., Simultaneous determination of intergranular interactions and intrinsic switching field distributions in magnetic materials., Appl. Phys. Lett., 2009, 95, 192504. CrossrefWeb of ScienceGoogle Scholar

  • [8] Fernández-Pacheco A., De Teresa J. M., Szkudlarek A., Córdoba R., Ibarra M. R., Petit D., O’Brien L., Zeng H. T., Lewis E. R., Read D. E., et al. Magnetization reversal in individual cobalt micro- and nanowires grown by focused-electron-beaminduced- deposition, Nanotechnology, 2009, 20, 475704. CrossrefWeb of ScienceGoogle Scholar

  • [9] Breitkreutz S., Kiermaier J., Vijay Karthik S., Csaba G., Schmitt- Landsiedel D., Becherer M., Controlled reversal of Co/Pt dots for nanomagnetic logic applications, J. Appl. Phys., 2012, 111, 07A715. Web of ScienceGoogle Scholar

  • [10] Nikulina E., Idigoras O., Vavassori P., Chuvilin A., Berger A., Magneto-optical magnetometry of individual 30 nm cobalt nanowires grown by electron beam induced deposition, Appl. Phys. Lett., 2012, 100, 142401. CrossrefGoogle Scholar

  • [11] Neumann A., Thönnissen C., Frauen A., Hesse S., Meyer A., Oepen H. P., Probing the magnetic behavior of single nanodots, Nano Lett., 2013, 13, 2199. PubMedCrossrefWeb of ScienceGoogle Scholar

  • [12] Chaves-O’Flynn G. D., Vanden-Eijnden E., Stein D. L., Kent A. D., Energy barriers to magnetization reversal in perpendicularly magnetized thin film nanomagnets, J. Appl. Phys., 2013, 113, 023912. CrossrefWeb of ScienceGoogle Scholar

  • [13] Ralph D. C., Stiles M. D., Spin transfer torques, J. Magn. Magn. Mater., 2008, 320, 1190–1216. Google Scholar

  • [14] Maruyama T., Shiota Y., Nozaki T., Ohta K., Toda N., Mizuguchi M., Tulapurkar A. A., Shinjo T., Shiarishi M., Mizukami S., et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron, Nat. Nanotechnol., 2009, 4, 158–161. CrossrefGoogle Scholar

  • [15] Parkin S. S. P., Hayashi M., Thomas L., Magnetic domain-wall racetrack memory, Science, 2008, 320, 190–194. Google Scholar

  • [16] van Dorp W. F., Hagen C. W., A critical literature review of focused electron beam induced deposition, J. Appl. Phys., 2008, 104, 081301. CrossrefWeb of ScienceGoogle Scholar

  • [17] Utke I., Moshkalev S., Russel P., Nanofabrication using focused ion and electron beams: principles and applications; Oxford University Press: New York, 2012. Google Scholar

  • [18] Huth M., Porrati F., Schwalb C., Winhold M., Sachser R., Dukic M., Adams J., Fantner G., Focused electron beam induced deposition: A perspective, Beilstein J. Nanotechnol., 2012, 3, 597–619. PubMedGoogle Scholar

  • [19] van Dorp W. F., van Someren B., Hagen C. W., Kruit P., Crozier P., Approaching the resolution limit of nanometer-scale electron beam-induced deposition, Nano Lett., 2005, 5, 1303–7. CrossrefPubMedGoogle Scholar

  • [20] Lau Y. M., Chee P. C., Thong J. T. L., Ng V., Properties and applications of cobalt-based material produced by electronbeam- induced deposition. J. Vac. Sci. Technol., A 2002, 20, 1295. CrossrefGoogle Scholar

  • [21] Fernández-Pacheco A., Serrano-Ramón L., Michalik J. M., Ibarra M. R., De Teresa J. M., O’Brien L., Petit D., Lee J., Cowburn R. P., Three dimensional magnetic nanowires grown by focused electron-beam induced deposition, Sci. Rep., 2013, 3, 1492. Web of ScienceGoogle Scholar

  • [22] Serrano-Ramón L., Córdoba R., Rodríguez L. A., Magén C., Snoeck E., Gatel C., Serrano I., Ibarra M. R., De Teresa J. M., Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition, ACS Nano, 2011, 5, 7781–7787. CrossrefWeb of ScienceGoogle Scholar

  • [23] Belova L. M., Dahlberg E. D., Riazanova A., Mulders J. J. L., Christophersen C., Eckert J., Rapid electron beam assisted patterning of pure cobalt at elevated temperatures via seeded growth, Nanotechnology, 2011, 22, 145305. CrossrefWeb of ScienceGoogle Scholar

  • [24] Boero G., Utke I., Bret T., Quack N., Todorova M., Mouaziz S., Kejik P., Brugger J., Popovic R. S., Hoffmann P., Submicrometer hall devices fabricated by focused electron-beam-induced deposition, Appl. Phys. Lett., 2005, 86, 042503. CrossrefGoogle Scholar

  • [25] Utke I., Michler J., Gasser P., Santschi C., Laub D., Cantoni M., Buffat, P. A., Jiao C., Hoffmann P., Cross section investigations of compositions and sub-structures of tips obtained by focused electron beam induced deposition, Adv. Eng. Mater., 2005, 7, 323–331. CrossrefGoogle Scholar

  • [26] Serrano-Ramón L., Fernández-Pacheco A., Ibarra M. R., Petit D., Cowburn R. P., Tyliszeczak T., De Teresa J. M., Modification of domain-wall propagation in Co nanowires via Ga+ irradiation, Eur. Phys. J. B, 2013, 86, 97. CrossrefWeb of ScienceGoogle Scholar

  • [27] Allwood D. A., Xiong G., Cooke M. D., Cowburn R. P., Magnetooptical Kerr effect analysis of magnetic nanostructures, J. Phys. D Appl. Phys., 2003, 36, 2175–2182. CrossrefGoogle Scholar

  • [28] Zeng H. T., Read D., O’Brien L., Sampaio J., Lewis E. R., Petit D., Cowburn R. P., Asymmetric magnetic NOT gate and shift registers for high density data storage, Appl. Phys. Lett., 2010, 96, 262510. CrossrefGoogle Scholar

  • [29] Schäfer R., Handbook of magnetism and advanced magnetic materials. Vol. 3: Novel techniques for characterizing and reparing samples. Part 5.; Kronmüller H., Parkin S. S., Eds.; John Wiley & Sons, Ltd, Chichester, 2007. Google Scholar

  • [30] Idigoras O., Vavassori P., Porro J. M., Berger A., Kerr microscopy study of magnetization reversal in uniaxial Co-films, J. Magn. Magn. Mater., 2010, 322, L57–L60. Web of ScienceGoogle Scholar

  • [31] Hartmann U., Magnetic force microscopy, Annu. Rev. Mater. Sci., 1999, 29, 53–87. CrossrefGoogle Scholar

  • [32] Rave W., Hubert A., Magnetic Ground State of a Thin-Film Element, IEEE Trans. Magn., 2000, 36, 3886. CrossrefGoogle Scholar

  • [33] Hankemeier S., Frömter, R., Mikuszeit N., Stickler D., Strillrich H., Pütter S., Vedmedenko E. Y., Oepen, H. P., Magnetic Ground State of Single and Coupled Permalloy Rectagle, Phys. Rev. Lett. 2009, 103, 147204. CrossrefWeb of ScienceGoogle Scholar

  • [34] Xie K., Zhang X., Lin W., Zhang P., Sang H., Phys. Rev. B, 2011, 84,054460. Google Scholar

  • [35] Donolato M., Torti A., Kostesha N., Deryabina M., Sogne E., Vavassori P., Hansen M. F., Bertacco R., Magnetic domain wall conduits for single cell applications, Lab Chip, 2011, 11, 2976–83. CrossrefWeb of SciencePubMedGoogle Scholar

  • [36] Vavassori P., Metlushko V., Ilic B., Gobbi M., Donolato M., Cantoni M., Bertacco R., Domain wall displacement in Py square ring for single nanometric magnetic bead detection, Appl. Phys. Lett., 2008, 93, 203502. CrossrefGoogle Scholar

  • [37] Nikulina E., Idigoras O., Porro J. M., Vavassori P., Chuvilin A., Berger A., Origin and control of magnetic exchange coupling in between focused electron beam deposited cobalt nanostructures. Appl. Phys. Lett., 2013, 103, 123112. CrossrefGoogle Scholar

  • [38] De Teresa J.M., Córdoba R., Arrays of Desenly Packed Isolated Nanowires by Focused Beam Induced Deposition Plus Ar+ Milling, ACS Nano, 2014, 8, 3788-95. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2014-02-27

Accepted: 2014-05-06

Published Online: 2014-06-26

Published in Print: 2014-01-01

Citation Information: Nanofabrication, Volume 1, Issue 1, ISSN (Online) 2299-680X, DOI: https://doi.org/10.2478/nanofab-2014-0003.

Export Citation

© 2014 O. Idigoras et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Soraya Sangiao, César Magén, Darius Mofakhami, Grégoire de Loubens, and José María De Teresa
Beilstein Journal of Nanotechnology, 2017, Volume 8, Page 2106
Luis A Rodríguez, Lorenz Deen, Rosa Córdoba, César Magén, Etienne Snoeck, Bert Koopmans, and José M De Teresa
Beilstein Journal of Nanotechnology, 2015, Volume 6, Page 1319
J M De Teresa, A Fernández-Pacheco, R Córdoba, L Serrano-Ramón, S Sangiao, and M R Ibarra
Journal of Physics D: Applied Physics, 2016, Volume 49, Number 24, Page 243003
Paolo Vavassori, Matteo Pancaldi, Maria J. Perez-Roldan, Andrey Chuvilin, and Andreas Berger
Small, 2016, Volume 12, Number 8, Page 1013
Marco Gavagnin, Heinz D. Wanzenboeck, Stefan Wachter, Mostafa M. Shawrav, Anders Persson, Klas Gunnarsson, Peter Svedlindh, Michael Stöger-Pollach, and Emmerich Bertagnolli
ACS Applied Materials & Interfaces, 2014, Volume 6, Number 22, Page 20254

Comments (0)

Please log in or register to comment.
Log in