Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Open Access
See all formats and pricing
More options …

Focused Ion Beam nano-patterning from traditional applications to single ion implantation perspectives

Jacques Gierak
Published Online: 2014-06-26 | DOI: https://doi.org/10.2478/nanofab-2014-0004


In this article we review some fundamentals of the Focused Ion Beam (FIB) technique based on scanning finely focused beams of gallium ions over a sample to perform direct writing. We analyse the main limitations of this technique in terms of damage generation or local contamination and through selected examples we discuss the potential of this technique in the light of the most sensitive analysis techniques. In particular we analyse the limits of Ga-FIB irradiation for the patterning of III-V heterostructures, thin magnetic layers, artificial defects fabricated onto graphite or graphene and atomically thin suspended membranes. We show that many of these earlypointed “limitations” with appropriate attention and analysis can be valuable for FIB instrument development, avoided, or even turned into decisive advantages. Such new methods transferable to the fabrication of devices or surface functionalities are urgently required in the emerging nanosciences applications and markets.

Keywords : FIB; Ga ions-solid interactions; nanofabrication


  • [1] Yamamoto M., Sato M., Kyogoku H., Aita K., Nakagawa Y., Yasaka A., et al., Submicron Mask Repair Using Focused Ion Beam Technology, Proc. SPIE 0632, Electron-Beam, X-Ray, and Ion-Beam Technology for Submicrometer Lithographies V, 97 (June 30, 1986); doi:10.1117/12.963674 Google Scholar

  • [2] Reyntjens S., Puers R., A review of focused ion beam applications in microsystem technology, J. Micromech. Microeng., 2001, 11, 287–300. CrossrefGoogle Scholar

  • [3] Ziegler J., SRIM - the stopping and range of ions in matter, http://www.srim.org/. Google Scholar

  • [4] Levi-Setti R., Crow G., Wang Y.L., Parker N.W., Mittleman R., High-Resolution Scanning-Ion-Microprobe Study of Graphite and its Intercalation Compounds, Phys. Rev. Lett., 1985, 54, 2615. CrossrefGoogle Scholar

  • [5] Orloff J., Focused Ion Beams, Sci. Am. Intl. Ed., 1991, 265, 74-79. Google Scholar

  • [6] Seliger R.L., Kubena R.L., Olney R.D., Ward J.W., Wang V., High-resolution, ion-beam processes for microstructure fabrication, J. Vac. Sci. Technol., 1979, 16, 1610. CrossrefGoogle Scholar

  • [7] Beale M.I.J., Broughton C., Deshmukh V.G.I., Focused ion beams for lithography and direct doping in VLSI device fabrication, Microelectron. Eng., 1986, 4, 233-249. CrossrefGoogle Scholar

  • [8] Lehrer et coll., EIPBN 2001, Washington, 2001. Google Scholar

  • [9] Gamo K., Miyake Y., Yuba Y., Namba S., Kasahara H., Sawaragi H., Aihara R, Defect study in GaAs bombarded by low-energy focused ion beams, J. Vac. Sci. Technol. B, 1988, 6, 2124. CrossrefGoogle Scholar

  • [10] Hirayama Y., Susuki Y., Okamoto H., Compositional disordering and very-fine lateral definition of GaAs-AlGaAs superlattices by focused Ga ion beams, Surf. Sci., 1986, 174, 98-104. Google Scholar

  • [11] Yamamoto T., Yanagisawa J., Gamo K., Takaoka S., Murase K., Estimation of damage induced by focused Ga ion beam irradiation, Jpn. J. Appl. Phys., 1993, 32, 6268-6273. Google Scholar

  • [12 Kazazis D., Genner U., Gierak J. et al, to be presented at EIPBN conference 2014 Google Scholar

  • [13] Gierak J., Focused ion beam technology and ultimate applications, Semicond. Sci. Technol., 2009, 24, 043001. CrossrefGoogle Scholar

  • [14] Orloff J., Swanson L.W., Utlaut M., Fundamental limits to imaging resolution for focused ion beams, J. Vac. Sci. Technol. B, 1996, 14, 3759-3763. CrossrefGoogle Scholar

  • [15] Kubena R.L., Ward J.W., Stratton F.P., Joyce R.J., Atkinson G.M., A low magnification focused ion beam system with 8 nm spot size, J. Vac. Sci. Technol. B, 1991, 9, 3079. CrossrefGoogle Scholar

  • [16] Vieu C., Ben Assayag G., Gierak J., Observation and simulation of focused ion beam induced damage, Nucl. lnstr. Meth. Phys. Res., 1994, 93, 439-446. Google Scholar

  • [17] Orloff J., Comparison of optical design approaches for use with liquid metal ion sources, J. Vac. Sci. Technol. B, 1987, 5, 175. CrossrefGoogle Scholar

  • [18] Kruit P., Jiang X.R., Influence of Coulomb interactions on choice of magnification, aperture size, and source brightness in a two lens focused ion beam column, J. Vac. Sci. Technol. B, 1996, 14, 1635. CrossrefGoogle Scholar

  • [19] Smith N.S., Tesch P.P., Martin N.P., Boswel R.W., New Ion Probe for Next Generation FIB, SIMS, and Nano-Ion Implantation, Microscopy Today, 2009, 17, 18-22. Google Scholar

  • [20] Carleson, Routh, Kelley, Young, High-Throughput, Site-Specific Inspection of 3D Interconnects using Plasma FIB Technology, 3D-IC Metrology Workshop, San Francisco CA USA, July 11, 2012. Google Scholar

  • [21] Levi-Setti R., Proton scanning microscopy: Feasibility and promise, in Scanning Electron Microscopy/1974, Johari O., Corvin I., ed., IIT Research Institute, Chicago, Ill., 1974, 125-134. Google Scholar

  • [22] Müller E.W., Das Feldionenmikroskop, Zeitschrift für Physik, 1951, 131, 136-142. Google Scholar

  • [23] Suvorov V.G., Forbes R.G., Theory of minimum emission current for a non-turbulent liquid-metal ion source, Microelectron. Eng., 2004, 73-74, 126-131. Google Scholar

  • [24] Van Es J.J., Gierak J., Forbes R.G., Suvorov V.G., Van den Berghe T., Dubuisson P., et al., An improved gallium liquid metal ion source geometry for nanotechnology, Microelectron. Eng., 2004, 73-74, 132-138. Google Scholar

  • [25] Sudraud P., Ben Assayag G., Bon M., Focused-ion-beam milling, scanning-electron microscopy, and focused-droplet deposition in a single microcircuit surgery tool, J. Vac. Sci. Technol. B, 1988, 6, 234. CrossrefGoogle Scholar

  • [26] Gnauck P., Vacuum’s Best 2005: Special Issue of “Vacuum in Research and Practice”, 2005. Google Scholar

  • [27] Thoms S., Electron Beam Lithography, in Nanofabrication Handbook, Cabrini S., Kawata S., ed., CRC Press, 2012. Google Scholar

  • [28] Gierak J., Jede R., Hawkes P., Nanolithography with Focused Ion Beams, in Nanofabrication Handbook, Cabrini S., Kawata S., ed., CRC Press, 2012. Google Scholar

  • [29] NanoFIB 2004, EC research project See: ftp://ftp.cordis.europa. eu/pub/nanotechnology/docs/n_s_nanofib_27052002.pdf Google Scholar

  • [30] Gierak J., Septier A., Vieu C., Design and realization of a very high-resolution FIB nanofabrication instrument, Nucl. Instr. and Meth. A, 1999, 427, 91-98. Google Scholar

  • [31] Lencova B., http://www.lencova.com/; Munro E., http://www. mebs.co.uk/. Google Scholar

  • [32] Sugimoto Y., Akita K., Taneya M., Wawanishi H., Aihara R., Watahiki T., A multichamber system for in situ lithography and epitaxial growth of GaAs, Rev. Sci. Instrum., 1991, 62, 1828-1835. CrossrefGoogle Scholar

  • [33] Chen C.H., Green D.L., Hu E.L., Ibbestson J.P., Petroff P.M., Radiation enhanced diffusion of low energy ion-induced damage, Appl. Phys. Lett., 1996, 69, 58-60. CrossrefGoogle Scholar

  • [34] Ben Assayag G., Vieu C., Gierak J., Sudraud P., Corbin A., New characterization method of ion current-density profile based on damage distribution of Ga+ focused-ion beam implantation in GaAs, J. Vac. Sci. Technol. B, 1993, 11, 2420-2426. CrossrefGoogle Scholar

  • [35] Gierak J., Ben Assayag G., Schneider M., Vieu C., Marzin J.Y., 3D defect distribution induced by focused ion beam irradiation at variable temperatures in a GaAsGaAlAs multi quantum well structure, Microelectron. Eng., 1996, 30, 253-256. Google Scholar

  • [36] Chappert C., Bernas H., Ferre J., Kottler V., Jamet J.P., Chen Y., et al., Planar Patterned Magnetic Media Obtained by Ion Irradiation, Science, 1998, 280, 1919-1922. Google Scholar

  • [37] Johnson W.L., Cheng Y.T., Van Rossum M., Nicolet M., When is thermodynamics relevant to ion-induced atomic rearrangements in metals?, Nucl. Instrum. Methods Phys. Res. B, 1985, 7, 657-665. CrossrefGoogle Scholar

  • [38] Albrecht M., Rettner C.T., Moser A., Best M.E., Terris B.D., Recording performance of high-density patterned perpendicular magnetic media, Appl. Phys. Lett., 2002, 81, 2875-2877. Google Scholar

  • [39] Ruotolo A., Wiebel S., Jamet J.P., Vernier N., Pullin D., Gierak J., Ferré J., Magneto-optical microscopy as a favourite tool to probe focused ion beam patterning at low dose, Nanotechnology, 2006, 17, 3308–3312. CrossrefGoogle Scholar

  • [40] Rau N., Stratton F., Fields C., Ogawa T., Neureuther A., Kubena R., Willson G., Shot-noise and edge roughness effects in resists patterned at 10 nm exposure, J. Vac. Sci. Technol. B, 1998, 16, 3784. Google Scholar

  • [41] Mélinon P., Hannour A., Bardotti L., Prével B., Gierak J., Bourhis E., et al., Ion beam nanopatterning in graphite: characterization of single extended defects, Nanotechnology, 2008, 19, 235305. CrossrefPubMedGoogle Scholar

  • [42] Perez A., Bardotti L., Prevel B., Jensen P., Treilleux M., Mélinon P., et al., Quantum-dot systems prepared by 2D organization of nanoclusters preformed in the gas phase on functionalized substrates, New J. Phys., 2002, 4, 76. Google Scholar

  • [43] Prével B., Benoit J.M., Bardotti L., Mélinon P., Ouerghi A., Lucot D., et al., Nanostructuring graphene on SiC by focused ion beam: effect of the ion fluence, Appl. Phys. Lett., 2011, 99, 083116. CrossrefGoogle Scholar

  • [44] Carleson, Routh, Kelley, Young, 3D-IC Metrology Workshop, San Francisco CA USA July 11, 2012 www.sematech.org/meetings/ archives/ Google Scholar

  • [45] Biance A.L., Gierak J., Bourhis E., Madouri A., Lafosse X., Patriarche G., et al., Focused ion beam sculpted membranes for nanoscience tooling, Microelectron. Eng., 2006, 83, 1474-1477. CrossrefGoogle Scholar

  • [46] Gierak J., Madouri A., Biance A.L., Bourhis E., Patriarche G., Ulysse C., et al., Sub-5 nm FIB direct patterning of nanodevices, Microelectron. Eng., 2007, 84, 779-783. Google Scholar

  • [47] Geim A.K., Graphene: status and prospects, Science, 2009, 324, 1530–1534. Google Scholar

  • [48] Garaj S., Hubbard W., Reina A., Kong J., Branton D., Golovchenko J.A., Graphene as a subnanometre trans-electrode membrane, Nature, 2010, 467, 190-193. Google Scholar

  • [49] Lucot D., Gierak J., Ouerghi A., Bourhis E., Faini G., Mailly D., Deposition and FIB direct patterning of nanowires and nanorings into suspended sheets of graphene, Microelectron. Eng., 2009, 86, 882-884. CrossrefGoogle Scholar

  • [50] Hemamouche A., Morin A., Bourhis E., Toury B., Tarnaud E., Mathé J., et al., FIB patterning of dielectric, metallized and graphene membranes: A comparative study, Microelectron. Eng., 2014, 121, 87-91. CrossrefGoogle Scholar

  • [51] Li W., Liang L., Zhao S., Zhang S., Xue J., Fabrication of nanopores in a graphene sheet with heavy ions: A molecular dynamics study, J. Appl. Phys., 2013, 114, 234304; Kotakoski J., Lehtinen O.J., Nanomachining Graphene with Ion Irradiation, MRS Proceedings 1259E, 2010, 1259-S18-02. Google Scholar

  • [52] Nguyen C.T., Balocchi A., Lagarde D., Zhang T.T., Carrère H., Mazzucato S., et al., Fabrication of an InGaAs spin filter by implantation of paramagnetic centers, Appl. Phys. Lett., 2013, 103, 052403. Google Scholar

  • [53] McCallum J.C., Jamieson D.N., Yang C., Alves A.D., Johnson B.C., Hopf T., et al., Single-Ion Implantation for the Development of Si-Based MOSFET Devices with Quantum Functionalities, Adv. Mater. Sci. Eng., 2012, 2012, 272694. doi:10.1155/2012/272694 CrossrefGoogle Scholar

  • [54] Aharonovich I., Greentree A.D., Prawer S., Diamond photonics, Nature Photon., 2011, 5, 397-405.Google Scholar

About the article

Received: 2014-02-13

Accepted: 2014-05-08

Published Online: 2014-06-26

Published in Print: 2014-01-01

Citation Information: Nanofabrication, Volume 1, Issue 1, ISSN (Online) 2299-680X, DOI: https://doi.org/10.2478/nanofab-2014-0004.

Export Citation

© 2014 Jacques Gierak. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Yue Wang, Zhiyuan Gu, Yinjuan Ren, Ziming Wang, Bingqing Yao, Zhili Dong, Giorgio Adamo, Haibo Zeng, and Handong Sun
ACS Applied Materials & Interfaces, 2019, Volume 11, Number 17, Page 15756
G V Voznyuk, I V Levitskii, M I Mitrofanov, D N Nikolaev, and V P Evtikhiev
Journal of Physics: Conference Series, 2018, Volume 1038, Page 012080
L. Bruchhaus, P. Mazarov, L. Bischoff, J. Gierak, A. D. Wieck, and H. Hövel
Applied Physics Reviews, 2017, Volume 4, Number 1, Page 011302
S. Guillous, C. Bourin, B. Ban D’Etat, A. Benyagoub, A. Cassimi, C. Feierstein, E. Gardés, E. Giglio, S. Girard, C. Grygiel, A. Houel, H. Lebius, A. Méry, I. Monnet, J.-M. Ramillon, J. Rangama, F. Ropars, E. Verzeroli, M. Viteau, and A. Delobbe
Review of Scientific Instruments, 2016, Volume 87, Number 11, Page 113901
Kallol Das, Jonathan B. Freund, and Harley T. Johnson
Journal of Applied Physics, 2015, Volume 117, Number 8, Page 085304

Comments (0)

Please log in or register to comment.
Log in