Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanofabrication

Open Access
Online
ISSN
2299-680X
See all formats and pricing
More options …

Focused Ion Beam Processing of Superconducting Junctions and SQUID Based Devices

David C. Cox
  • Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, U.K.
  • National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, U.K.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ John C. Gallop / Ling Hao
Published Online: 2014-07-07 | DOI: https://doi.org/10.2478/nanofab-2014-0005

Abstract

Focused ion beam (FIB) has found a steady and growing use as a tool for fabrication, particularly in the length-scale of micrometres down to nanometres. Traditionally more commonly used for materials characterisation, FIB is continually finding new research areas in a growing number of laboratories. For example, over the last ten years the number of FIB instruments in the U.K. alone has gone from single figures, largely supplied by a single manufacturer, to many tens of instruments supplied by several competing manufacturers. Although the smaller of the two research areas, FIB fabrication has found itself to be incredibly powerful in the modification and fabrication of devices for all kinds of experimentation. Here we report our use of FIB in the production of Superconducting QUantum Interference Devices (SQUIDs) and other closely related devices for metrological applications. This is an area ideally suited to FIB fabrication as the required precision is very high, the number of required devices is relatively low, but the flexibility of using FIB means that a large range of smallbatch, and often unique, devices can be constructed quickly and with very short lead times.

Keywords : Focused Ion Beam; SQUID; Nanofabrication

References

  • [1] Clarke J., Braginski A., ed., The SQUID Handbook Fundamentals and Technology of SQUIDs and SQUID Systems, 2004, 1, New York: Wiley–VCH. Google Scholar

  • [2] Koelle D., Kleiner R., Ludwig F., Danster E., Clarke J., High-transition-temperature superconducting quantum interference devices, Rev. Mod. Phys., 1999, 71 631; Erratum, Rev. Mod. Phys., 1999, 71, 1249. Google Scholar

  • [3] Gallop J.C., SQUIDs: some limits to measurement, Supercond. Sci. Technol., 2003, 16, 1575. CrossrefGoogle Scholar

  • [4] Hilgenkamp H., Mannhart J., Grain boundaries in high-Tc superconductors, Rev. Mod. Phys., 2002, 74, 485. Google Scholar

  • [5] Veauvy C., Hasselbach K., Mailly D., Scanning μ-superconduction quantum interference device force microscope, Rev. Sci. Instrum., 2002, 73, 3825-3830. Google Scholar

  • [6] Hilgenkamp H., Ariando, Smilde H.J., Blank D., Rijnders G., Rogalla H., et al., Ordering and manipulation of the magnetic moments in large-scale superconducting pi-loop arrays, Nature, 2003, 422, 50-53. Google Scholar

  • [7] Hao L., Macfarlane J.C., Lam S.K.H., Foley C.P., Josephs-Franks P., Gallop J.C., Inductive Sensor Based on Nano-scale SQUIDs, IEEE Trans. Appl. Supercond., 2005, 15, 514-517. Google Scholar

  • [8] Awschalom D.D., Rozen J.R., Ketchen M.B., Gallagher W.J., Kleinsasser A.W., Sandstrom R.L., Bumble B., Low‐noise modular microsusceptometer using nearly quantum limited dc SQUIDs, Appl. Phys. Lett., 1986, 53, 2108. Google Scholar

  • [9] Lam S.K.H., Tilbrook D.L., Development of a niobium nanosuperconducting quantum interference device for the detection of small spin populations, Appl. Phys. Lett., 2003, 82, 1078-1080. Google Scholar

  • [10] Cleuziou J.P., Wernsdorfer W., Bouchiat V., Ondarcuhu T., Nonthioux M., Carbon nanotube superconducting quantum interference device, Nat. Nanotechnol., 2006, 1, 53-59. Google Scholar

  • [11] Gallop J., Josephs-Franks P.W., Davis J., Hao L., Macfarlane J., Miniature dc SQUID devices for the detection of single atomic spin-flips, Physica C, 2002, 368, 109-113. Google Scholar

  • [12] Hao L., Gallop J.C., Cox D., Romans E., Macfarlane J.C., Chen J., Focused Ion Beam NanoSQUIDs as Novel NEMS Resonator Readouts, IEEE Trans. Appl. Supercond., 2009, l19, 693-696. Web of ScienceGoogle Scholar

  • [13] Troeman A.G.P., Derking H., Borger B., Pleikies J., Veldhuis D., Hilgenkamp H., NanoSQUIDs Based on Niobium Constrictions, Nano Lett., 2007, 7, 2152-2156. CrossrefWeb of ScienceGoogle Scholar

  • [14] Hao L., Macfarlane J.C., Gallop J.C., Romans E., Cox D., Hutson D., Chen J., Spatial resolution assessment of Nano-SQUIDs made by focused ion beam, IEEE Trans. Appl. Supercond., 2007, 17, 742-745. Web of ScienceCrossrefGoogle Scholar

  • [15] Hao L., Macfarlane J.C., Gallop J.C., Cox D., Beyer J., Drung D., Schurig T., Measurement and noise performance of nano-superconducting-quantum-interference devices fabricated by focused ion beam, Appl. Phys. Lett., 2008, 92, 192507. Google Scholar

  • [16] Calculated using SRIM (Stopping Range of Ions in Matter). www.srim.org. Google Scholar

  • [17] Additional calculations using SUPRE (Surrey University Sputter Profile Resolution and Energy deposition programme). www. surrey.ac.uk/ati/ibc/research/modelling_simulation/suspre. htm. Google Scholar

  • [18] Nanometer Pattern Generation System (NPGS). www.jcnabity. com. Google Scholar

  • [19] Hao L., Aßmann C., Gallop J.C., Cox D.C., Ruede F., Kazakova O., et al., Detection of Single Magnetic Nanobead with a Nano-Superconducting Quantum Interference Device, Appl. Phys. Lett., 2011, 98, 092504. Google Scholar

  • [20] Vasyukov D., Anahory Y., Embon L., Halbertal D., Cuppens J., Neeman L., et al., A scanning superconducting quantum interference device with single electron spin sensitivity, Nat. Nanotechnol., 2013, 8, 639-644. PubMedWeb of ScienceCrossrefGoogle Scholar

  • [21] Hao L., Cox D.C., Gallop J.C., Chen J., Rozhko S., Blois A., Romans E.J., Coupled NanoSQUIDs and Nano-Electromechanical Systems (NEMS) Resonators, IEEE Trans. Appl. Supercond., 2013, 23, 1800304. Web of ScienceCrossrefGoogle Scholar

  • [22] Jin Y.R, Song X,H., Zhang D.L., Grain-size dependence of superconductivity in dc sputtered Nb films, Science in China Series G, Physics Mechanics & Astronomy, 2009, 52, 1289-1292. Web of ScienceGoogle Scholar

  • [23] Bose S., Raychaudri P., Banerjee R., Vasa P., Ayyub P., Mechanism of the Size Dependence of the Superconducting Transition of Nanostructured Nb, Phys. Rev. Lett., 2005, 95, 147003. Google Scholar

  • [24] Work currently in progress.Google Scholar

About the article

Received: 2014-03-20

Accepted: 2014-05-13

Published Online: 2014-07-07


Citation Information: Nanofabrication, Volume 1, Issue 1, ISSN (Online) 2299-680X, DOI: https://doi.org/10.2478/nanofab-2014-0005.

Export Citation

© 2014 David C. Cox et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yusuke Shibata, Shintaro Nomura, Hiromi Kashiwaya, Satoshi Kashiwaya, Ryosuke Ishiguro, and Hideaki Takayanagi
Scientific Reports, 2015, Volume 5, Number 1
[2]
Yukihiro Miura, Satoshi Kashiwaya, and Shintaro Nomura
Japanese Journal of Applied Physics, 2017, Volume 56, Number 4S, Page 04CK03
[3]
Yusuke Shibata, Shintaro Nomura, Ryosuke Ishiguro, Hiromi Kashiwaya, Satoshi Kashiwaya, Yusuke Nago, and Hideaki Takayanagi
Superconductor Science and Technology, 2016, Volume 29, Number 10, Page 104004
[4]
John Gallop, David Cox, and Ling Hao
Superconductor Science and Technology, 2015, Volume 28, Number 8, Page 084002

Comments (0)

Please log in or register to comment.
Log in