Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Open Access
See all formats and pricing
More options …

Mechanical magnetometry of Cobalt nanospheres deposited by focused electron beam at the tip of ultra-soft cantilevers

Hugo Lavenant
  • Service de Physique de l’État Condensé (CNRS URA 2464), CEA Saclay, 91191 Gif-sur- Yvette, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir Naletov
  • Service de Physique de l’État Condensé (CNRS URA 2464), CEA Saclay, 91191 Gif-sur- Yvette, France
  • Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olivier Klein
  • Service de Physique de l’État Condensé (CNRS URA 2464), CEA Saclay, 91191 Gif-sur- Yvette, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grégoire de Loubens / Laura Casado
  • Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Mariano Esquillor 50018 Zaragoza, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José María De Teresa
  • Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Mariano Esquillor 50018 Zaragoza, Spain
  • Instituto de Ciencia de Materiales de Aragón (ICMA), Departamento de Física de la Materia Condensada, Universidad de Zaragoza-CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-26 | DOI: https://doi.org/10.2478/nanofab-2014-0006


Using focused-electron-beam-induced deposition, Cobalt magnetic nanospheres with diameter ranging between 100 nm and 300 nm are grown at the tip of ultra-soft cantilevers. By monitoring the mechanical resonance frequency of the cantilever as a function of the applied magnetic field, the hysteresis curve of these individual nanospheres are measured. This enables the evaluation of their saturation magnetization, found to be around 430 emu/cm3 independent of the size of the particle, and to infer that the magnetic vortex state is the equilibrium configuration of these nanospheres at remanence.

SEM image of a 200 nm Co nanosphere grown at the tip of an ultra-soft cantilever by focus electron beam induced deposition.

Keywords : Focused-electron-beam-induced deposition; Cobalt; nanomagnet; magnetic nanosphere; magnetic vortex; magnetometry; cantilever; mechanical detection


  • [1] Rugar D., Mamin H. J., Guethner P., Lambert S. E., Stern J. E., McFadyen I., Yogi T., Magnetic force microscopy: General principles and application to longitudinal recording media, J. Appl. Phys., 1990, 68, 1169-1183. CrossrefGoogle Scholar

  • [2] Shinjo T., Okuno T., Hassdorf R., Shigeto K., Ono T., Magnetic Vortex Core Observation in Circular Dots of Permalloy, Science, 2000, 289, 930-932. Google Scholar

  • [3] Sidles J.A., Garbini J.L., Bruland K.J., Rugar D., Züger O., Hoen S., Yannoni C.S., Magnetic resonance force microscopy, Rev. Mod. Phys., 1995, 67, 249-265. Google Scholar

  • [4] Rugar D., Budakian R., Mamin H.J., Chui B.W., Single spin detection by magnetic resonance force microscopy, Nature, 2004, 430, 329-332. Google Scholar

  • [5] Wolny F., Obukhov Y., Mühl T., Weißker U., Philippi S., Leonhardt A., et al., Quantitative magnetic force microscopy on permalloy dots using an iron filled carbon nanotube probe, Ultramicroscopy, 2011, 111, 1360-1365. Web of ScienceGoogle Scholar

  • [6] Hamadeh A., de Loubens G., Naletov V.V., Grollier J., Ulysse C., Cros V., Klein O., Autonomous and forced dynamics in a spin-transfer nano-oscillator: Quantitative magnetic-resonance force microscopy, Phys. Rev. B, 2012, 85, 140408. CrossrefWeb of ScienceGoogle Scholar

  • [7] Mamin H.J., Rettner C.T., Sherwood M.H., Gao L., Rugar D., High field-gradient dysprosium tips for magnetic resonance force microscopy, Appl. Phys. Lett., 2012, 100, 013102. CrossrefGoogle Scholar

  • [8] Mamin H.J., Rugar D., Sub-attonewton force detection at millikelvin temperatures, Appl. Phys. Lett., 2001, 79, 3358-3360. CrossrefGoogle Scholar

  • [9] Degen C.L., Poggio M., Mamin H.J., Rettner C.T., Rugar D., Nanoscale magnetic resonance imaging, Proc. Natl. Acad. Sci., 2009, 106, 1313-1317. CrossrefGoogle Scholar

  • [10] Hickman S.A., Moore E.W., Lee S.-G., Longenecker J.G., Wright S.J., Harrell L.E., Marohn J.A., Batch-fabrication of cantilevered magnets on attonewton-sensitivity mechanical oscillators for scanned-probe nanoscale magnetic resonance imaging, ACS Nano, 2010, 4, 7141-7150. Web of ScienceCrossrefGoogle Scholar

  • [11] Klein O., de Loubens G., Naletov V.V., Boust F., Guillet T., Hurdequint H., et al., Ferromagnetic resonance force spectroscopy of individual submicron-size samples, Phys. Rev. B, 2008, 78, 144410. CrossrefWeb of ScienceGoogle Scholar

  • [12] Lee I., Obukhov Y., Xiang G., Hauser A., Yang F., Banerjee P., et al., Nanoscale scanning probe ferromagnetic resonance imaging using localized modes, Nature, 2010, 466, 845-848. Web of ScienceGoogle Scholar

  • [13] Banerjee P., Wolny F., Pelekhov D.V., Herman M.R., Fong K.C., Weissker U., et al., Magnetization reversal in an individual 25 nm iron-filled carbon nanotube, Appl. Phys. Lett., 2010, 96, 252505. Web of ScienceCrossrefGoogle Scholar

  • [14] Utke I., Hoffmann P., Berger R., Scandella L., High-resolution magnetic Co supertips grown by a focused electron beam, Appl. Phys. Lett., 2002, 80, 4792-4794. CrossrefGoogle Scholar

  • [15] Fernández-Pacheco A., de Teresa J.M., Córdoba R., Ibarra M.R., Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition, J. Phys. D Appl. Phys., 2009, 42, 055005. CrossrefGoogle Scholar

  • [16] Belova L.M., Hellwig O., Dobisz E., Dahlberg E.D., Rapid preparation of electron beam induced deposition Co magnetic force microscopy tips with 10 nm spatial resolution, Rev. Sci. Instrum., 2012, 83, 093711. PubMedCrossrefWeb of ScienceGoogle Scholar

  • [17] Chia H.-J., Guo F., Belova L.M., McMichael R.D., Nanoscale Spin Wave Localization Using Ferromagnetic Resonance Force Microscopy, Phys. Rev. Lett., 2012, 108, 087206. CrossrefPubMedWeb of ScienceGoogle Scholar

  • [18] Guo F., Belova L.M., McMichael R.D., Spectroscopy and Imaging of Edge Modes in Permalloy Nanodisks, Phys. Rev. Lett., 2013, 110, 017601. PubMedCrossrefWeb of ScienceGoogle Scholar

  • [19] Lee J., Yoo M.-W., Han D.-S., Kim S.-K., Size-selective resonant excitation of soft magnetic nano-spheres of three-dimensional magnetic vortex, arXiv:1311.0346. Google Scholar

  • [20] Pylypovskyi O.V., Sheka D.D., Gaididei Y., Bloch point structure in a magnetic nanosphere, Phys. Rev. B, 2012, 85, 224401. CrossrefGoogle Scholar

  • [21] Johnson P., Gangopadhyay A.K., Kalyanaraman R., Nussinov Z., Demagnetization-borne microscale skyrmions, Phys. Rev. B, 2012, 86, 064427. Web of ScienceCrossrefGoogle Scholar

  • [22] de Loubens G., Naletov V.V., Klein O., Youssef J.B., Boust F., Vukadinovic N., Magnetic Resonance Studies of the Fundamental Spin-Wave Modes in Individual Submicron Cu/ NiFe/Cu Perpendicularly Magnetized Disks, Phys. Rev. Lett., 2007, 98, 127601. CrossrefWeb of ScienceGoogle Scholar

  • [23] de Loubens G., Riegler A., Pigeau B., Lochner F., Boust F., Guslienko K.Y., et al., Bistability of Vortex Core Dynamics in a Single Perpendicularly Magnetized Nanodisk, Phys. Rev. Lett., 2009, 102, 177602. CrossrefWeb of ScienceGoogle Scholar

  • [24] Naletov V.V., de Loubens G., Albuquerque G., Borlenghi S., Cros V., Faini G., et al., Identification and selection rules of the spin-wave eigenmodes in a normally magnetized nanopillar, Phys. Rev. B, 2011, 84, 224423. CrossrefWeb of ScienceGoogle Scholar

  • [25] Pigeau B., de Loubens G., Klein O., Riegler A., Lochner F., Schmidt G., Molenkamp L.W., Optimal control of vortex-core polarity by resonant microwave pulses, Nature Phys., 2011, 7, 26-31. CrossrefWeb of ScienceGoogle Scholar

  • [26] Pigeau B., Hahn C., de Loubens G., Naletov V.V., Klein O., Mitsuzuka K., et al., Measurement of the Dynamical Dipolar Coupling in a Pair of Magnetic Nanodisks Using a Ferromagnetic Resonance Force Microscope, Phys. Rev. Lett., 2012, 109, 247602. CrossrefWeb of ScienceGoogle Scholar

  • [27] Serrano-Ramón L., Córdoba R., Rodriguez L.A., Magén C., Snoeck E., Gatel C., et al., Ultrasmall Functional Ferromagnetic Nanostructures Grown by Focused Electron-Beam-Induced Deposition, ACS Nano, 2011, 5, 7781-7787. CrossrefWeb of ScienceGoogle Scholar

  • [28] De Teresa J.M., Córdoba R., Arrays of Densely Packed Isolated Nanowires by Focused Beam Induced Deposition Plus Ar+ Milling, ACS Nano, 2014, 8, 3788-3795. CrossrefPubMedWeb of ScienceGoogle Scholar

  • [29] Córdoba R., Fernández-Pacheco R., Fernández-Pacheco A., Gloter A., Magén C., Stephan O., et al., Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM, Nanoscale Res. Lett., 2011, 6, 592. Web of ScienceCrossrefGoogle Scholar

  • [30] Fernández-Pacheco A., de Teresa J.M., Szkudlarek A., Córdoba R., Ibarra M.R., Petit D., et al., Magnetization reversal in individual cobalt micro- and nanowires grown by focusedelectron- beam-induced-deposition, Nanotechnology, 2009, 20, 475704. CrossrefWeb of ScienceGoogle Scholar

  • [31] Marohn J.A., Fainchtein R., Smith D.D., An optimal magnetic tip configuration for magnetic-resonance force microscopy, Appl. Phys. Lett., 1998, 73, 3778-3780. Google Scholar

  • [32] Stipe B.C., Mamin H.J., Stowe T.D., Kenny T.W., Rugar D., Magnetic dissipation and fluctuations in individual nanomagnets measured by ultrasensitive cantilever magnetometry, Phys. Rev. Lett., 2001, 86, 2874-2877. PubMedCrossrefGoogle Scholar

  • [33] Gysin U., Rast S., Aste A., Speliotis T., Werle C., Meyer E., Magnetic properties of nanomagnetic and biomagnetic systems analyzed using cantilever magnetometry, Nanotechnology, 2011, 22, 285715. CrossrefWeb of SciencePubMedGoogle Scholar

  • [34] Albrecht T.R., Grütter P., Horne D., Rugar D., Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, J. Appl. Phys., 1991, 69, 668-673. CrossrefGoogle Scholar

  • [35] Charbois V., Détection Mécanique de la Résonance Ferromagnétique, Université Paris 7, 2003. Google Scholar

  • [36] Tandon S., Beleggia M., Zhu Y., De Graef M., On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part I: Analytical approach, J. Magn. Magn. Mater., 2004, 271, 9-26. Google Scholar

  • [37] Thiaville A., García J.M., Dittrich R., Miltat J., Schrefl T., Micromagnetic study of Bloch-point-mediated vortex core reversal, Phys. Rev. B, 2003, 67, 094410. Google Scholar

  • [38] Snoeck E., Gatel C., Lacroix L.M., Blon T., Lachaize S., Carrey J., et al., Magnetic Configurations of 30 nm Iron Nanocubes Studied by Electron Holography, Nano Lett., 2008, 8, 4293-4298. Web of ScienceCrossrefGoogle Scholar

  • [39] Biziere N., Gatel C., Lassalle-Balier R., Clochard M.C., Wegrowe J.E., Snoeck E., Imaging the Fine Structure of a Magnetic Domain Wall in a Ni Nanocylinder, Nano Letters, 2013, 13, 2053-2057. Web of ScienceCrossrefGoogle Scholar

  • [40] Tetienne J.-P., Hingant T., Rondin L., Rohart S., Thiaville A., Roch J.-F., Jacques V., Quantitative stray field imaging of a magnetic vortex core, Phys. Rev. B, 2013, 88, 214408. CrossrefGoogle Scholar

  • [41] Belova L.M., Dahlberg E.D., Riazanova A., Mulders J.J.L., Christophersen C., Eckert J., Rapid electron beam assisted patterning of pure cobalt at elevated temperatures via seeded growth, Nanotechnology, 2011, 22, 145305. PubMedCrossrefWeb of ScienceGoogle Scholar

  • [42] Fernández-Pacheco A., Serrano-Ramón L., Michalik J.M., Ibarra M.R., de Teresa J.M., O’Brien L., et al., Three dimensional magnetic nanowires grown by focused electron-beam induced deposition, Scientific Reports, 2013, 3, 1492. Google Scholar

  • [43] Lavrijsen R., Córdoba R., Schoenaker F.J., Ellis T.H., Barcones B., Kohlhepp J.T., et al., Fe:O:C grown by focused-electronbeam- induced deposition: magnetic and electric properties, Nanotechnology, 2011, 22, 025302. CrossrefGoogle Scholar

  • [44] Gavagnin M., Wanzenboeck H.D., Belić D., Bertagnolli E., Synthesis of Individually Tuned Nanomagnets for Nanomagnet Logic by Direct Write Focused Electron Beam Induced Deposition, ACS Nano, 2013, 7, 777-784.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2014-04-02

Accepted: 2014-05-15

Published Online: 2014-06-26

Published in Print: 2014-01-01

Citation Information: Nanofabrication, Volume 1, Issue 1, ISSN (Online) 2299-680X, DOI: https://doi.org/10.2478/nanofab-2014-0006.

Export Citation

© 2014 Hugo Lavenant et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Y. Li, V. V. Naletov, O. Klein, J. L. Prieto, M. Muñoz, V. Cros, P. Bortolotti, A. Anane, C. Serpico, and G. de Loubens
Physical Review X, 2019, Volume 9, Number 4
Z. Hajijamali-Arani, B. Jazi, and S. Jahanbakht
Plasmonics, 2017, Volume 12, Number 4, Page 1245
Daniel Capic, Dmitry A. Garanin, and Eugene M. Chudnovsky
Physical Review B, 2019, Volume 100, Number 1
Luis A Rodríguez, Lorenz Deen, Rosa Córdoba, César Magén, Etienne Snoeck, Bert Koopmans, and José M De Teresa
Beilstein Journal of Nanotechnology, 2015, Volume 6, Page 1319
Soraya Sangiao, César Magén, Darius Mofakhami, Grégoire de Loubens, and José María De Teresa
Beilstein Journal of Nanotechnology, 2017, Volume 8, Page 2106
R. Bastardis, F. Vernay, and H. Kachkachi
Physical Review B, 2018, Volume 98, Number 16
A. Volodin, C. Van Haesendonck, E. V. Skorokhodov, R. V. Gorev, and V. L. Mironov
Applied Physics Letters, 2018, Volume 113, Number 12, Page 122407
Dmitry A. Garanin, Daniel Capic, Senfu Zhang, Xixiang Zhang, and Eugene M. Chudnovsky
Journal of Applied Physics, 2018, Volume 124, Number 11, Page 113901
J.-L. Déjardin, A. Franco, F. Vernay, and H. Kachkachi
Physical Review B, 2018, Volume 97, Number 22
R. V. Gorev and V. L. Mironov
Physics of the Solid State, 2017, Volume 59, Number 11, Page 2174
Markus Stiller, José Barzola-Quiquia, Pablo D Esquinazi, Soraya Sangiao, José M De Teresa, Jan Meijer, and Bernd Abel
Measurement Science and Technology, 2017, Volume 28, Number 12, Page 125401
K. Neilinger, J. Šoltýs, M. Mruczkiewicz, J. Dérer, and V. Cambel
Journal of Magnetism and Magnetic Materials, 2017
Javier Pablo-Navarro, Dédalo Sanz-Hernández, César Magén, Amalio Fernández-Pacheco, and José María de Teresa
Journal of Physics D: Applied Physics, 2017, Volume 50, Number 18, Page 18LT01
R Bastardis, F Vernay, D-A Garanin, and H Kachkachi
Journal of Physics: Condensed Matter, 2017, Volume 29, Number 2, Page 025801
Javier Pablo-Navarro, César Magén, and José María de Teresa
Nanotechnology, 2016, Volume 27, Number 28, Page 285302
J M De Teresa, A Fernández-Pacheco, R Córdoba, L Serrano-Ramón, S Sangiao, and M R Ibarra
Journal of Physics D: Applied Physics, 2016, Volume 49, Number 24, Page 243003
Patricia Peinado, Soraya Sangiao, and José M. De Teresa
ACS Nano, 2015, Volume 9, Number 6, Page 6139
J. M. De Teresa and A. Fernández-Pacheco
Applied Physics A, 2014, Volume 117, Number 4, Page 1645

Comments (0)

Please log in or register to comment.
Log in