Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanofabrication

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-680X
See all formats and pricing
More options …

Magnetic properties of cobalt microwires measured by piezoresistive cantilever magnetometry

G. Tosolini
  • Istituto Italiano di Tecnologia (IIT), Center for Bio-Molecular Nanotechnologies, Via Barsanti, 73010 Arnesano, Italy/Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), 08193 Bellaterra, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. M. Michalik
  • Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, Universidad de Zaragoza-CSIC, Facultad de Ciencias, 50009 Zaragoza, Spain/ Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Córdoba
  • Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. M. de Teresa
  • Corresponding author
  • Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, Universidad de Zaragoza-CSIC, Facultad de Ciencias, 50009 Zaragoza, Spain/ Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ F. Pérez-Murano / J. Bausells
Published Online: 2014-09-19 | DOI: https://doi.org/10.2478/nanofab-2014-0008

Abstract

We present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID) and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.

Keywords : Piezoresistive cantilever magnetometry; cobalt focused electron beam induced deposition

References

  • [1] Azzerboni B., Pareti L., Asti G. (Eds.), Magnetic nanostructures in modern technology: Spintronics, Magnetic MEMS and Recording, Springer, New York, 2008.Google Scholar

  • [2] Cowburn R.P., Property variation with shape in magnetic nanoelements, J. Phys. D: Appl. Phys., 2000, 33, R1-R16.Google Scholar

  • [3] Utke I., Hofmann P., Melngailis J., Gas-assisted focused electron beam and ion beam processing and fabrication, J. Vac. Sci. Technol. B, 2008, 26, 1197-1276.CrossrefWeb of ScienceGoogle Scholar

  • [4] van Dorp W. F., Hagen C. W., A critical literature review of focused electron beam induced deposition, J. Appl. Phys., 2008, 104, 081301 (42pp).CrossrefWeb of ScienceGoogle Scholar

  • [5] Fernández-Pacheco A., De Teresa J.M., Szkudlarek A., Córdoba R., Ibarra M.R., Petit D., O’Brien L., Zeng H.T., Lewis E.R., Read D.E., Cowburn R.P., Magnetization reversal in individual cobalt micro- and nanowires grown by focused-electron-beaminduced- deposition, Nanotechnology, 2009, 20, 475704 (9pp).CrossrefWeb of ScienceGoogle Scholar

  • [6] Fernández-Pacheco A., Serrano-Ramón L., Michalik J.M., Ibarra M.R., De Teresa J.M., O’Brien L., Petit D., Lee J., Cowburn R.P., Three dimensional magnetic nanowires grown by focused electron-beam induced deposition, Scient. Rep., 2013, 3, 1492 (5pp).Google Scholar

  • [7] Jaafar M., Serrano-Ramón L., Iglesias-Freire O., Fernández- Pacheco A., Ibarra M.R., De Teresa J.M., Asenjo A., Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy, Nanoscale Res. Lett., 2011, 6, 407 (6 pp).Web of ScienceGoogle Scholar

  • [8] Ekinci K.L., Roukes M.L., Nanoelectromechanical systems, Rev, Sci. Instrum., 2005, 76, 061101 (12pp).CrossrefGoogle Scholar

  • [9] Chaste J., Eichler A., Moser J., Ceballos G., Rurali R., Bachtold A., A nanomechanical mass sensor with yoctogram resolution, Nature Nanotech., 2012, 7, 301-304.Web of ScienceGoogle Scholar

  • [10] Rugar D., Budakian R., Mamin H.J., Chui B.W., Single spin detection by magnetic resonance force microscopy, Nature, 2004, 430, 329-332.Google Scholar

  • [11] Losby J., Burgess J.A.J., Holt C.M.B., Westwood J.N., Mitlin D., Hiebert W.K., Freeman M.R., Nanomechanical torque magnetometry of permalloy cantilevers, J. Appl. Phys., 2010, 108, 123910 (5pp).Web of ScienceCrossrefGoogle Scholar

  • [12] Li M., Tang H.X., Roukes M.L., Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications, Nature Nanotech., 2007, 2, 114-120.Web of ScienceGoogle Scholar

  • [13] Willemin M., Rossel C., Brugger J., Despont M.H., Rothuizen H., Vettiger P., Hofer J., Keller H., Piezoresistive cantilever designed for torque magnetometry, J. Appl. Phys., 1998, 83, 1163-1170.Google Scholar

  • [14] Villanueva G., Montserrat J., Pérez-Murano F., Rius G., Bausells J., Submicron piezoresistive cantilevers in a CMOS-compatible technology for intermolecular force detection, Microelectron. Eng., 2004, 73-74, 480-486.Google Scholar

  • [15] Villanueva G., Plaza J.A., Montserrat J., Pérez-Murano F., Bausells J., Crystalline silicon cantilevers for piezoresistive detection of biomolecular forces, Microelectron. Eng., 2008, 85, 1120-1123.Web of ScienceGoogle Scholar

  • [16] Tosolini G., Villanueva L.G., Pérez-Murano F., Bausells J., Fast on-wafer electrical, mechanical, and electromechanical characterization of piezoresistive cantilever force sensors, Rev. Sci. Instrum., 2012, 83, 015002 (7pp).CrossrefWeb of ScienceGoogle Scholar

  • [17] Tosolini G., Scarponi F., Cannistraro S., Bausells J., Biomolecule recognition using piezoresistive nanomechanical force probes, Appl. Phys. Lett., 2013, 102, 253701 (5pp).CrossrefWeb of ScienceGoogle Scholar

  • [18] Fernández-Pacheco A., De Teresa J.M., Córdoba R., Ibarra M.R., Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition, J. Phys. D: Appl. Phys., 2009, 42, 055005 (6pp).Google Scholar

  • [19] Tripathi S.K., Shukla N., Dhamodaran S., Kulkarni V.N., Controlled manipulation of carbon nanopillars and cantilevers by focused ion beam, Nanotechnology, 2008, 19, 205302 (6pp).PubMedCrossrefWeb of ScienceGoogle Scholar

  • [20] Rajput N.S., Banerjee A., Verma H.C., Electron- and ion-beaminduced maneuvering of nanostructures: phenomenon and applications, Nanotechnology, 2011, 22, 485302 (7pp).CrossrefWeb of ScienceGoogle Scholar

  • [21] Gysin U., Rast S., Aste A., Speliotis T., Werle C., Meyer E., Magnetic properties of nanomagnetic and biomagnetic systems analyzed using cantilever magnetometry, Nanotechnology, 2011, 22, 285715 (8pp).CrossrefWeb of SciencePubMedGoogle Scholar

  • [22] Utke I., Hoffmann P., Berger R., Scandella L., High-resolution magnetic Co supertips grown by a focused electron beam, Appl. Phys. Lett., 2002, 80, 4792-4794.Google Scholar

  • [23] Belova L.M., Hellwig O., Dobisz E., Dahlberg E.D., Rapid preparation of electron beam induced deposition Co magnetic force microscopy tips with 10 nm spatial resolution, Rev. Sci. Instrum., 2012, 83, 093711 (4pp).Web of ScienceGoogle Scholar

About the article

Received: 2014-05-13

Accepted: 2014-07-07

Published Online: 2014-09-19


Citation Information: Nanofabrication, ISSN (Online) 2299-680X, DOI: https://doi.org/10.2478/nanofab-2014-0008.

Export Citation

© 2014 G. Tosolini et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Javier Pablo-Navarro, Dédalo Sanz-Hernández, César Magén, Amalio Fernández-Pacheco, and José María de Teresa
Journal of Physics D: Applied Physics, 2017, Volume 50, Number 18, Page 18LT01
[2]
J M De Teresa, A Fernández-Pacheco, R Córdoba, L Serrano-Ramón, S Sangiao, and M R Ibarra
Journal of Physics D: Applied Physics, 2016, Volume 49, Number 24, Page 243003

Comments (0)

Please log in or register to comment.
Log in