Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Open Access
See all formats and pricing
More options …

Identifying the crossover between growth regimes via in-situ conductance measurements in focused electron beam induced deposition

M. Winhold
  • Physikalisches Institut, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. M. Weirich
  • Physikalisches Institut, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. H. Schwalb
  • Physikalisches Institut, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Huth
  • Physikalisches Institut, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-15 | DOI: https://doi.org/10.2478/nanofab-2014-0009


Focused electron beam induced deposition presents a promising technique for the fabrication of nanostructures. However, due to the dissociation of mostly organometallic precursor molecules employed for the deposition process, prepared nanostructures contain organic residues leading to rather low conductance of the deposits. Post-growth treatment of the structures by electron irradiation or in reactive atmospheres at elevated temperatures can be applied to purify the samples. Recently, an in-situ conductance optimization process involving evolutionary genetic algorithm techniques has been introduced leading to an increase of conductance by one order of magnitude for tungsten-based deposits using the precursor W(CO)6. This method even allows for the optimization of conductance of nano-structures for which post-growth treatment is not possible or desirable. However, the mechanisms responsible for the observed enhancement have not been studied in depth. In this work, we identified the dwell-time dependent change of conductivity of the samples to be the major contributor to the change of conductance. Specifically, the chemical composition drastically changes with a variation of dwelltime resulting in an increase of the metal content by 15 at% for short dwell-times. The relative change of growth rate amounts to less than 25 % and has a negligible influence on conductance. We anticipate the in-situ genetic algorithm optimization procedure to be of high relevance for new developments regarding binary or ternary systems prepared by focused electron or ion beam induced deposition.

Keywords : focused electron beam induced deposition; genetic algorithm; optimization; nanostructures; tungsten


  • [1] M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, and G. Fantner. Focused electron beam induced deposition: A perspective. Beilstein Journal of Nanotechnology, 2012, 3, 597-619. Web of ScienceCrossrefGoogle Scholar

  • [2] A. Fernandez-Pacheco, L. Serrano-Ramon, J. M. Michalik, M. R. Ibarra, J. M. De Teresa, L. O’Brien, D. Petit, J. Lee, and R. P. Cowburn. Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Scientific Reports, 2013, 3, 1492. Web of ScienceGoogle Scholar

  • [3] W. F. van Dorp, B. van Someren, C. W. Hagen, and P. Kruit. Approaching the resolution limit of nanometer-scale electron beam-induced deposition. Nano Letters, 2005, 5(7), 1303-1307. CrossrefGoogle Scholar

  • [4] L. van Kouwen, A. Botman, and C. W. Hagen. Focused electronbeam- induced deposition of 3 nm dots in a scanning electron microscope. Nano Letters, 2009, 9(5), 2149-2152. CrossrefWeb of ScienceGoogle Scholar

  • [5] G. Boero, I. Utke, T. Bret, N. Quack, M. Todorova, S. Mouaziz, P. Kejik, J. Brugger, R. S. Popovic, and P. Hoffmann. Submicrometer hall devices fabricated by focused electron beam-induced deposition. Applied Physics Letters, 2005, 86(4), 042503. CrossrefGoogle Scholar

  • [6] L. Serrano-Ramon, R. Cordoba, L. A. Rodriguez, C. Magen, E. Snoeck, C. Gatel, I. Serrano, M. R. Ibarra, and J. M. De Teresa. Ultrasmall func- tional ferromagnetic nanostructures grown by focused electron-beam- induced deposition. Acs Nano, 2011, 5(10), 7781-7787. CrossrefWeb of ScienceGoogle Scholar

  • [7] C. H. Schwalb, C. Grimm, M. Baranowski, R. Sachser, F. Porrati, H. Reith, P. Das, J. Muller, F. Volklein, A. Kaya, and M. Huth. A tunable strain sensor using nanogranular metals. Sensors, 2010, 10(11), 9847-9856. CrossrefGoogle Scholar

  • [8] F. Kolb, K. Schmoltner, M. Huth, A. Hohenau, J. Krenn, A. Klug, E.J.W. List, and H. Plank. Variable tunneling barriers in FEBID based Pt-C metal-matrix nanocomposites as transducing element for humidity sensing. Nanotechnology, 2013, 24, 305501. Web of ScienceCrossrefGoogle Scholar

  • [9] M. Huth, A. Rippert, R. Sachser, and L. Keller. Probing near-interface ferroelectricity by conductance modulation of a nano-granular metal. submitted to Materials Research Express, 2014. Google Scholar

  • [10] A. J. M. Mackus, N. F. W. Thissen, J. J. L. Mulders, P. H. F. Trompenaars, M. A. Verheijen, A. A. Bol, and W. M. M. Kessels. Direct- write atomic layer deposition of high-quality Pt nanostructures: Selective growth conditions and seed layer requirements. Journal of Physical Chemistry C, 2013, 117(20), 10788-10798. Web of ScienceCrossrefGoogle Scholar

  • [11] I. Utke, P. Hoffmann, and J. Melngailis. Gas-assisted focused electron beam and ion beam processing and fabrication. Journal of Vacuum Science & Technology B, 2008, 26(4), 1197-1276. CrossrefGoogle Scholar

  • [12] W. F. van Dorp and C. W. Hagen. A critical literature review of focused electron beam induced deposition. Journal of Applied Physics, 2008, 104(8), 081301. Web of ScienceGoogle Scholar

  • [13] L. Bernau, M. Gabureac, R. Erni, and I. Utke. Tunable nanosynthesis of composite materials by electron-impact reaction. Angewandte Chemie- international Edition, 2010, 49(47), 8880-8884. Web of ScienceCrossrefGoogle Scholar

  • [14] T. Lukasczyk, M. Schirmer, H. P. Steinruck, and H. Marbach. Electron-beam-induced deposition in ultrahigh vacuum: Lithographic fabrication of clean iron nanostructures. Small, 2008, 4(6), 841-846. Web of ScienceCrossrefGoogle Scholar

  • [15] T. Lukasczyk, M. Schirmer, H. P. Steinruck, and H. Marbach. Generation of clean iron structures by electron-beaminduced deposition and selective catalytic decomposition of iron pentacarbonyl on Rh(110). Langmuir, 2009, 25(19), 11930-11939. CrossrefWeb of ScienceGoogle Scholar

  • [16] R. Cordoba, J. Sese, J. M. De Teresa, and M. R. Ibarra. High-purity cobalt nanostructures grown by focused-electronbeam- induced deposition at low current. Microelectronic Engineering, 2010, 87(5-8), 1550-1553. Web of ScienceCrossrefGoogle Scholar

  • [17] F. Porrati, R. Sachser, C. H. Schwalb, A. S. Frangakis, and M. Huth. Tuning the electrical conductivity of Pt-containing granular metals by postgrowth electron irradiation. Journal of Applied Physics, 2011, 109(6), 063715. CrossrefGoogle Scholar

  • [18] R. Sachser, F. Porrati, C. H. Schwalb, and M. Huth. Universal conductance correction in a tunable strongly coupled nanogranular metal. Physical Review Letters, 2011, 107(20), 206803. Web of ScienceCrossrefGoogle Scholar

  • [19] H. Plank, G. Kothleitner, F. Hofer, S. G. Michelitsch, C. Gspan, A. Hohenau, and J. R. Krenn. Optimization of post-growth electron-beam curing for focused electron-beam-induced pt deposits. Journal of Vacuum Science & Technology B, 2011, 29(5), 051801. Web of ScienceCrossrefGoogle Scholar

  • [20] R. Sachser, H. Reith, D. Huzel, M. Winhold, and M. Huth. Catalytic purification of directly written nanostructured Pt microelectrodes, ACS Applied Materials & Interfaces, 2014, 6, 15868-15874 Web of ScienceGoogle Scholar

  • [21] S. Mehendale, J. J. L. Mulders, and P. H. F. Trompenaars. A new sequential EBID process for the creation of pure Pt structures from MeCpPtMe3. Nanotechnology, 2013, 24(14), 145303. CrossrefWeb of ScienceGoogle Scholar

  • [22] A. Botman, J. J. L. Mulders, R. Weemaes, and S. Mentink. Purification of platinum and gold structures after electronbeam- induced deposition. Nanotechnology, 2006, 17(15), 3779-3785. CrossrefGoogle Scholar

  • [23] H. Plank, J. H. Noh, J. D. Fowlkes, K. Lester, B. B. Lewis, and P. D. Rack. Electron-beam-assisted oxygen purification at low temperatures for electron-beam-induced Pt deposits: Towards pure and high-delitynanostructures. ACS Applied Materials & Interfaces, 2014, 6(2), 1018-1024. Web of ScienceGoogle Scholar

  • [24] A. Botman, J. J. L. Mulders, and C. W. Hagen. Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology, 2009, 20(37), 372001. Web of ScienceCrossrefGoogle Scholar

  • [25] N. A. Roberts, J. D. Fowlkes, G. A. Magel, and P. D. Rack. Enhanced material purity and resolution via synchronized laser assisted electron beam induced deposition of platinum. Nanoscale, 2013, 5(1), 408-415. CrossrefWeb of ScienceGoogle Scholar

  • [26] P. M. Weirich, M. Winhold, C. H. Schwalb, and M. Huth. In situ growth optimization in focused electron-beam induced deposition. Beilstein Journal of Nanotechnology, 2013, 4, 919-926. Web of ScienceCrossrefGoogle Scholar

  • [27] P. C. Hoyle, M. Ogasawara, J. R. A. Cleaver, and H. Ahmed. Electrical-resistance of electron-beam-induced deposits from tungsten hexacarbonyl. Applied Physics Letters, 1993, 62(23), 3043-3045. CrossrefGoogle Scholar

  • [28] M. Huth, D. Klingenberger, C. Grimm, F. Porrati, and R. Sachser. Conductance regimes of W-based granular metals prepared by electron beam induced deposition. New Journal of Physics, 2009, 11, 033032. Web of ScienceCrossrefGoogle Scholar

  • [29] F. Porrati, R. Sachser, and M. Huth. The transient electrical conductivity of W-based electron-beam-induced deposits during growth, irradiation and exposure to air. Nanotechnology, 2009, 20(19), 195301. CrossrefWeb of ScienceGoogle Scholar

  • [30] M. Winhold, P.M. Weirich, C.H. Schwalb, and M. Huth. Modeling the in-situ conductance optimization process in focused electron-beam-induced deposition. Microelectronic Engineering, 2014, 121(0), 42-46. CrossrefWeb of ScienceGoogle Scholar

  • [31] J. D. Fowlkes and P. D. Rack. Fundamental electron-precursorsolid interactions derived from time-dependent electron-beam-induced deposition simulations and experiments. ACS Nano, 2010, 4(3), 1619-1629. Web of ScienceCrossrefGoogle Scholar

  • [32] I. Utke, V. Friedli, M. Purrucker, and J. Michler. Resolution in focused electron- and ion-beam induced processing. Journal of Vacuum Science & Technology B, 2007, 25(6), 2219-2223. Web of ScienceCrossrefGoogle Scholar

  • [33] S. G. Rosenberg, M. Barclay, and D. H. Fairbrother. Electron induced reactions of surface adsorbed tungsten hexacarbonyl (W(CO)6). Physical Chemistry Chemical Physics, 2013, 15(11), 4002-4015. CrossrefGoogle Scholar

  • [34] E. S. Sadki, S. Ooi, and K. Hirata. Focused-ion-beam-induced deposition of superconducting nanowires. Applied Physics Letters, 2004, 85(25), 6206-6208. CrossrefGoogle Scholar

  • [35] D. Spoddig, K. Schindler, P. Rodiger, J. Barzola-Quiquia, K. Fritsch, H. Mulders, and P. Esquinazi. Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope. Nanotechnology, 2007, 18(49), 495202. CrossrefWeb of ScienceGoogle Scholar

  • [36] J. M. De Teresa, A. Fernandez-Pacheco, R. Cordoba, J. Sese, R. Ibarra,I. Guillamon, H. Suderow, and S. Vieira. Transport properties of superconducting amorphous w-based nanowires fabricated by focused-ion-beam-induced-deposition for applications in nanotechnology. MRS Online Proceedings Library, 2009, 1, 1180. Google Scholar

  • [37] I. J. Luxmoore, I. M. Ross, A. G. Cullis, P. W. Fry, J. Orr, P. D. Buckle, and J. H. Jefferson. Low temperature electrical characterization of tungsten nanowires fabricated by electron and ion beam induced chemical vapor deposition. Thin Solid Films, 2007, 515(17), 6791-6797. Google Scholar

  • [38] H. Langfischer, B. Basnar, H. Hutter, and E. Bertagnolli. Evolution of tungsten film deposition induced by focused ion beam. Journal of Vacuum Science & Technology A, 2002, 20(4), 1408-1415. Web of ScienceCrossrefGoogle Scholar

  • [39] J. M. De Teresa, R. Cordoba, A. Fernandez-Pacheco, O. Montero, P. Strichovanec, and M. R. Ibarra. Origin of the difference in the resistivity of as-grown focused-ion- and focused-electronbeam- induced Pt nanodeposits. Journal of Nanomaterials, 2009, 936863. Web of ScienceGoogle Scholar

  • [40] K. Muthukumar, R. Valenti, and H. O. Jeschke. Simulation of structural and electronic properties of amorphous tungsten oxycarbides. New Journal of Physics, 2012, 14(11), 113028. CrossrefGoogle Scholar

  • [41] G. E. Moore. Dissociation of adsorbed Co by slow electrons. Journal of Applied Physics, 1961, 32(7), 1241. CrossrefGoogle Scholar

  • [42] R.M. Lambert and C.M. Comrie. The role of primary and secondary electrons in electron induced desorption and dissociation: CO on Pt(111). Surface Science, 1973, 38(1), 197-209. CrossrefGoogle Scholar

  • [43] P. M. Weirich, C. H. Schwalb, M. Winhold, and M. Huth. Superconductivity in the system MoxCyGazOδ prepared by focused ion beam induced deposition. Journal of Applied Physics, 2014, 115(17). Web of ScienceCrossrefGoogle Scholar

  • [44] M. Winhold, C. H. Schwalb, F. Porrati, R. Sachser, A. S. Frangakis, B. Kampken, A. Terfort, N. Auner, and M. Huth. Binary Pt-Si nanostructures prepared by focused electronbeam- induced deposition. ACS Nano, 2011, 5(12), 9675-9681. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2014-02-26

Accepted: 2014-07-01

Published Online: 2014-12-15

Citation Information: Nanofabrication, Volume 1, Issue 1, ISSN (Online) 2299-680X, DOI: https://doi.org/10.2478/nanofab-2014-0009.

Export Citation

© 2014 M. Winhold et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ragesh Kumar T P, Paul Weirich, Lukas Hrachowina, Marc Hanefeld, Ragnar Bjornsson, Helgi Rafn Hrodmarsson, Sven Barth, D Howard Fairbrother, Michael Huth, and Oddur Ingólfsson
Beilstein Journal of Nanotechnology, 2018, Volume 9, Page 555

Comments (0)

Please log in or register to comment.
Log in