Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanofabrication

Open Access
Online
ISSN
2299-680X
See all formats and pricing
More options …

Nanofabrication techniques of highly organized monolayers sandwiched between two electrodes for molecular electronics

Pilar Cea
  • Departamento de Química Física, Facultad de Ciencias Universidad de Zaragoza, Zaragoza, 50009, Spain
  • Instituto de Nanociencia de Aragón (INA) Campus Rio Ebro Edificio i+d Universidad de Zaragoza, Zaragoza, 50018, Spain
  • Laboratorio de Microscopias Avanzadas (LMA) Campus Rio Ebro Edificio i+d Universidad de Zaragoza, Zaragoza, 50018, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luz Marina Ballesteros
  • Universidad Industrial de Santander, Escuela de Ingeniería Química, Carrera 27 calle 9 ciudad universitaria, Bucaramanga, Colombia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Santiago Martín
  • Departamento de Química Física, Facultad de Ciencias Universidad de Zaragoza, Zaragoza, 50009, Spain
  • Laboratorio de Microscopias Avanzadas (LMA) Campus Rio Ebro Edificio i+d Universidad de Zaragoza, Zaragoza, 50018, Spain
  • Instituto de Ciencia de Materiales de Aragón (ICMA) Universidad de Zaragoza-CSIC, Zaragoza, 50009, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-15 | DOI: https://doi.org/10.2478/nanofab-2014-0010

Abstract

It is expected that molecular electronics, i.e., the use of molecules as critical functional elements in electronic devices, will lead in the near future to an industrial exploitable novel technology, which will open new routes to high value-added electronic products. However, despite the enormous advances in this field several scientific and technological challenges should be surmounted before molecular electronics can be implemented in the market. Among these challenges are the fabrication of reliable, robust and uniform contacts between molecules and electrodes, the deposition of the second (top) contact electrode, and development of assembly strategies for precise placement of molecular materials within device structures. This review covers advances in nanofabrication techniques used for the assembly of monomolecular films onto conducting or semiconducting substrates as well as recent methods developed for the deposition of the top contact electrode highlighting the advantages and limitations of the several approaches used in the literature. This contribution also aims to define areas of outstanding challenges in the nanofabrication of monomolecular layers sandwiched between two electrodes and opportunities for future research and applications.

Keywords : molecular junctions; monolayers; molecular electronics; nanofabrication

References

  • Google Scholar

  • [1] Editorial, Does molecular electronics compute?, Nat. Nanotechnol., 2013, 8, 377-377. Google Scholar

  • [2] Editorial, Visions for a molecular future, Nat. Nanotechnol., 2013, 8, 385-389. Google Scholar

  • [3] Fatemi V., Kamenetska M., Neaton J.B., Venkataraman L., Environmental Control of Single-Molecule Junction Transport, Nano Lett., 2011, 11, 1988-1992. CrossrefGoogle Scholar

  • [4] Ferreira Q., Braganca A.M., Alcácer L., Morgado J., Conductance of well-defined porphyrin self-sssembled molecular wires up to 14 nm in length, J. Phys. Chem. C., 2014, 118, 7229-7234. Google Scholar

  • [5] McCreery R.L., Bergren A.J., Progress with molecular electronic junctions: meeting experimental challenges in design and fabrication, Adv. Mater., 2009, 21, 4303-4322. CrossrefGoogle Scholar

  • [6] Tao N.J., Electron transport in molecular junctions, Nat. Nanotechnol., 2006, 1, 173-181. CrossrefGoogle Scholar

  • [7] Weibel N., Grunder S., Mayor M., Functional molecules in electronic circuits, Org. Biomol. Chem., 2007, 5, 2343-2353. Google Scholar

  • [8] Grozema F.C., Siebbeles D.A., Electronics and molecular wires. Charge and exciton transport through molecular wires, Siebbeles L.D.A., Grozema F.C. (Eds.). Wiley-VDH Verlag GmbH & Co. KGaA, W. 2011. Google Scholar

  • [9] Aviram A., Ratner M., Molecular rectifiers, Chem. Phys. Lett., 1974, 29, 277-283. CrossrefGoogle Scholar

  • [10] Reed M.A., Zhou C., Muller C.J., Burgin T.P., Tour J.M., Conductance of a molecular junction, Science, 1997, 278, 252-254. CrossrefGoogle Scholar

  • [11] Cui X., Primak A., Zarate X., Tomfohr J., Sankey O.F., Moore A.L., et al., Reproducible measurement of single-molecule conductivity, Science, 2001, 294, 571-574. Google Scholar

  • [12] Smith R.H.M., Noat Y., Untiedt C., Lang N.D., van Hemert M.C., van Ruitenbeek J.M., Measurement of the conductance of a hydrogen molecule, Nature, 2002, 419, 906-909. Google Scholar

  • [13] Xu B.Q., Tao N.J., Measurement of single-molecule resistance by repeated formation of molecular junctions, Science, 2003, 301, 1221-1223. Google Scholar

  • [14] Reichert J., Ochs R., Beckmann D., Weber H.B., Mayor M., von Löhneysen H., Driving current through single organic molecules, Phys. Rev. Lett., 2002, 88, 176804. CrossrefGoogle Scholar

  • [15] Haiss W., Wang C., Grace I., Batsanov A.S., Schiffrin D.J., Higgins S.J., et al., Precision control of single-molecule electrical junctions, Nat. Mater., 2006, 5, 995-1002. CrossrefGoogle Scholar

  • [16] Kiguchi M., Tal O., Wohlthat S., Pauly F., Krieger M., Djukic D., et al., Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes, Phys. Rev. Lett., 2008, 101, 046801. CrossrefGoogle Scholar

  • [17] Lafferentz L., Ample F., Yu H., Hecht S., Joachim C., Grill L., Conductance of a single conjugated polymer as a continuous function of its length, Science, 2009, 323, 1193-1197. Google Scholar

  • [18] Sedghi G., Garcia-Suarez V., Esdaile L., Anderson H., Lambert C., Martin S., et al., Long-range electron tunnelling in oligo-porphyrin molecular wires, Nat. Nanotechnol., 2011, 6, 517-523. CrossrefGoogle Scholar

  • [19] Perrin M.L., Verzijl C.J.O., Martin C.A., Shaikh A.J., Eelkema R., van Esch J.H., et al., Large tunable image-charge effects in single-molecule junctions, Nat. Nanotechnol., 2013, 8, 282-287. CrossrefGoogle Scholar

  • [20] Aradhya S.V., Venkataraman L., Single-molecule junctions beyond electronic transport, Nat. Nanotechnol., 2013, 8, 399-410. CrossrefGoogle Scholar

  • [21] Karthäuser S., Control of molecule-based transport for future molecular devices, J. Phys. Cond. Matter., 2011, 23, 013001. CrossrefGoogle Scholar

  • [22] Pera G., Martín S., Ballesteros L.M., Hope A.J., Low P.J., Nichols R.J., Cea P., Metal-molecule-metal junctions in Langmuir-Blodgett films using a new linker: Trimethylsilane, Chem. Eur. J., 2010, 16, 13398-13405. CrossrefGoogle Scholar

  • [23] Ballesteros L.M., Martín S., Cortés J., Marqués-González S., Higgins S.J., Nichols R.J., et al., Controlling the structural and electrical properties of diacid oligo(phenylene ethynylene) Langmuir-Blodgett films, Chem. Eur. J., 2013, 19, 5352-5363. CrossrefGoogle Scholar

  • [24] Balzani V., Nanoscience and nanotechnology: The bottom-up construction of molecular devices and machines, Pure Appl. Chem., 2008, 80, 1631-1650. Google Scholar

  • [25] Nuzzo R.G., Allara D.L., Adsorption of bifunctional organic disulfides on gold surfaces J. Am. Chem. Soc., 1983, 105, 4481-4483. CrossrefGoogle Scholar

  • [26] Ulman A., An Introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly, 1991, San Diego: Academic Press, Inc. Google Scholar

  • [27] Dubois L.H., Nuzzo R.G., Synthesis, structure, and properties of model organic-surfaces, Annu. Rev. Phys. Chem., 1992, 43, 437-463. CrossrefGoogle Scholar

  • [28] Bain C.D., Whitesides G.M., Attenuation lengths of photoelectrons in hydrocarbon films, J. Phys. Chem., 1989, 93, 1670-1673. CrossrefGoogle Scholar

  • [29] Fendler J.H., Chemical self-assembly for electronic applications, Chem. Mater., 2001, 13, 3196-3210. CrossrefGoogle Scholar

  • [30] Kühnle A., Self-assembly of organic molecules at metal surfaces, Curr. Opin. Colloid Interface Sci., 2009, 14, 157-168. CrossrefGoogle Scholar

  • [31] Vericat C., Vela M.E., Benitez G., Carro P., and Salvarezza R.C., Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system, Chem. Soc. Rev., 2010, 39, 1805-1834. CrossrefGoogle Scholar

  • [32] Vericat C., Vela M.E., Corthey G., Pensa E., Cortés E., Fonticelli M.H., et al., Self-assembled monolayers of thiolates on metals: a review article on sulfur-metal chemistry and surface structures, RSC Adv., 2014, 4, 27730-27754. Google Scholar

  • [33] Halik M., Hirsch A., The potential of molecular self-assembled monolayers in organic electronic devices, Adv. Mater., 2011, 23, 2689-2695. CrossrefGoogle Scholar

  • [34] Dhirani A., Zehner R.W., Hsung R.P., Guyot-Sionnest P., Sita L.R., Self-assembly of conjugated molecular rods: A high-resolution STM study, J. Am. Chem. Soc., 1996, 118, 3319-3320. CrossrefGoogle Scholar

  • [35] Ciszek J.W., Stewart M.P., Tour J.M., Spontaneous assembly of organic thiocyanates on gold sufaces. Alternative precursors for gold thiolate assemblies, J. Am. Chem. Soc., 2004, 126, 13172-13173. CrossrefGoogle Scholar

  • [36] Ulman A., Formation and structure of self-assembled monolayers, Chem. Rev., 1996, 96, 1533-1554. CrossrefGoogle Scholar

  • [37] James D.K., Tour J.M., Electrical measurements in molecular electronics, Chem. Mater., 2004, 16, 4423-4435. CrossrefGoogle Scholar

  • [38] Lewis P.A., Inman C.E., Maya F., Tour J.M., Hutchison J.E., Weiss P.S., Molecular engineering of the polarity and interactions of molecular electronic switches, J. Am. Chem. Soc., 2005, 127, 17421-17426. CrossrefGoogle Scholar

  • [39] Ditzler L.R., Karunatilaka C., Donuru V.R., Liu H.Y., Tivanski A.V., Electromechanical Properties of self-assembled monolayers of tetrathiafulvalene derivatives studied by conducting probe atomic force microscopy, J. Phys. Chem. C., 2010, 114, 4429-4435. Google Scholar

  • [40] Liu K., Li G., Wang X., Wang F., Length dependence of electron conduction for oligo(1,4-phenylene ethynylene)s: a conductive probe-atomic force microscopy investigation, J. Phys. Chem. C, 2008, 112, 4342-4349. Google Scholar

  • [41] Qi Y., Ratera I., Prk J.Y., Ashby P.D., Quek S.Y., Neaton J.B., Salmeron M., Mechanical and charge transport properties of alkanethiol self-assembled monolayers on a Au(111) surface: The role of molecular tilt, Langmuir, 2008, 24, 2219-2223. CrossrefGoogle Scholar

  • [42] Choi S.H., Kim B., Frisbie C.D., Electrical resistance of long conjugated molecular wires, Science, 2008, 320, 1482-1486. CrossrefGoogle Scholar

  • [43] Techane S.D., Gamble L.J., Castner D.G., Multitechnique Characterization of self-assembled carboxylic acid-terminated alkanethiol monolayers on nanoparticle and flat gold surfaces, J. Phys. Chem. C., 2011, 115, 9432-9441. Google Scholar

  • [44] Pookpanratana S., Robertson J.W.F., Jaye C., Fischer D.A., Richter C.A., Hacker C.A., Electrical and physical characterization of bilayer carboxylic acid-functionalized molecular layers, Langmuir, 2013, 29, 2083-2091. CrossrefGoogle Scholar

  • [45] Querebillo C.J., Terfort A., Allara D.L., Zharnikov M., Static conductance of nitrile-substituted oligophenylene and oligo(phenylene ethynylene) self-assembled mono layers studied by the mercury-drop method, J. Phys. Chem. C., 2013, 117, 25556-25561. Google Scholar

  • [46] Häkkinen H., The gold-sulfur interface at the nanoscale, Nat. Chem., 2012, 4, 443-455. CrossrefGoogle Scholar

  • [47] Henkelman G., Arnaldsson A., Jónsson H., A fast and robust algorithm for Bader decomposition of charge density, Comp. Mater. Sci., 2006, 36, 354-360. CrossrefGoogle Scholar

  • [48] Grönbeck H., Walter M., Häkkinen H., Theoretical characterization of cyclic thiolated gold clusters, J. Am. Chem. Soc., 2006, 128, 10268-10275. CrossrefGoogle Scholar

  • [49] Howell J.A.S., Structure and bonding in cyclic thiolate complexes of copper, silver and gold, Polyhedron, 2006, 25, 2993-3005. CrossrefGoogle Scholar

  • [50] Kacprzak K.A., López-Acevedo O., Häkkinen H., Grönbeck H., Theoretical characterization of cyclic thiolated copper, silver, and gold clusters, J. Phys. Chem. C., 2010, 114, 13571-13576. Google Scholar

  • [51] Barngrover B.M., Aikens C.M., Incremental binding energies of gold(I) and silver(I) thiolate clusters, J. Phys. Chem. A., 2011, 115, 11818-11823. CrossrefGoogle Scholar

  • [52] Ning C.-G., Xiong X.-G., Wang Y.-L., Li J., Wang L.-S., Probing the electronic structure and chemical bonding of the “staple” motifs of thiolate gold nanoparticles: Au(SCH3)(2)(-) and Au-2(SCH3)(3)(-), Phys. Chem. Chem. Phys., 2012, 14, 9323-9329. CrossrefGoogle Scholar

  • [53] Tour J.M., Jones II L., Pearson D.L., Lamba J.J.S., Burgin T.P., Whitesides G.M., et al., Self-Assembled monolayers and multilayers of conjugated thiols, alpha, omega-dithiols, omega-dithiols, and thioacetyl-containing adsorbaes - understanding attachments between potential molecular wires and gold surfaces, J. Am. Chem. Soc., 1995, 117, 9529-9534. CrossrefGoogle Scholar

  • [54] Stapleton J.J., Harder P., Daniel T.A., Reinard M.D., Yao Y., Price D.W., et al., Self-assembled oligo(phenylene-ethynylene) molecular electronic switch monolayers on gold: Structures and chemical stability, Langmuir, 2003, 19, 8245-8255. CrossrefGoogle Scholar

  • [55] Ishida T., Hara M., Kojima I., Tsuneda S., Nishida N., Sasabe H., Knowll W., High resolution X-ray photoelectron spectroscopy measurements of octadecanethiol self-assembled monolayers on Au(111), Langmuir, 1998, 14, 2092-2096. CrossrefGoogle Scholar

  • [56] Sellers H., Ulman A., Shnidman Y., Eilers J.E., Structure and binding of alkanethiolates on gold and silver surfaces - implications for self-assembled monolayers, J. Am. Chem. Soc., 1993, 115, 9389-9401. CrossrefGoogle Scholar

  • [57] Müller K.H., Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules, Phys. Rev. B., 2006, 73, 045403. CrossrefGoogle Scholar

  • [58] Ramachandran G.K., Hopson T.J., Rawlett A.M., Nagahara L.A., Primak A., Lindsay S.M., A bond-fluctuation mechanism for stochastic switching in wired molecules, Science, 2003, 300, 1413-1416. Google Scholar

  • [59] Keane Z.K., Ciszek J.W., Tour J.M., Natelson D., Three-terminal devices to examine single-molecule conductance switching, Nano Lett., 2006, 6, 1518-1521. CrossrefGoogle Scholar

  • [60] Yasuda S., Yoshida S., Sasaki J., Okutsu Y., Nakamura T., Taninaka A., et al., Bond fluctuation of S/Se anchoring observed in single-molecule conductance measurements using the point contact method with scanning tunneling microscopy, J. Am. Chem. Soc., 2006, 128, 7746-7747. CrossrefGoogle Scholar

  • [61] Schreiber F., Eberhardt A., Leung T.Y.B., Schwartz P., Wetterer S.M., Lavrich, et al., Adsorption mechanisms, structures, and growth regimes of an archetypal self-assembling system: Decanethiol on Au(111), Phys. Rev. B, 1998, 57, 12476-12481. CrossrefGoogle Scholar

  • [62] Nitzan A., Ratner M.A., Electron transport in molecular wire junctions, Science, 2003, 300, 1384-1389. Google Scholar

  • [63] Xue Y.Q., Datta S., Ratner M.A., Charge transfer and “band lineup” in molecular electronic devices: a chemical and numerical interpretation, J. Chem. Phys., 2001, 115, 4292-4299. Google Scholar

  • [64] von Wrochem F., Gao D., Scholz F., Nothofer H.-G., Nelles G., Wessels J.M., Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions, Nat. Nanotechnol., 2010, 5, 618-624. CrossrefGoogle Scholar

  • [65] Gao D., Scholz F., Nothofer H.-G., Ford W.E., Scherf U., Wessels J.M., et al., Fabrication of asymmetric molecular junctions by the oriented assembly of dithiocarbamate rectifiers, J. Am. Chem. Soc., 2011, 133, 5921-5930. CrossrefGoogle Scholar

  • [66] Li Z., Kosov D.S., Dithiocarbamate anchoring in molecular wire junctions: a first principles study, J. Phys. Chem. B., 2006, 110, 9893-9898. CrossrefGoogle Scholar

  • [67] Schulz P., Schäfer T., Zangmeister C.D., Effertz C., Meyer D., Mokros D., et al., A new route to low resistance contacts for performance-enhanced organic electronic devices, Adv. Mater. Interfaces, 2014, In Press. DOI: 10.1002/admi.201300130. CrossrefGoogle Scholar

  • [68] Adaligil E., Shon Y.-S., Slowinski K., Effect of headgroup on electrical conductivity of self-assembled monolayers on mercury: n-alkanethiols versus n-alkaneselenols, Langmuir, 2010, 26, 1570-1573. CrossrefGoogle Scholar

  • [69] Monnell J.D., Stapleton J.J., Dirk S.M., Reinerth A., Tour J.M., Allara D.L., Weiss, P.S., Relative conductances of alkaneselenolate and alkanethiolate monolayers on Au{111}, J. Phys. Chem. B., 2005, 109, 20343-20349. CrossrefGoogle Scholar

  • [70] Lu Q., Yao C., Wang X., Wang F., Enhancing molecular conductance of oligo(p-phenylene ethynylene)s by incorporating ferrocene into their backbones, J. Phys. Chem. B., 2012, 116, 17853-17861. Google Scholar

  • [71] Ashwell G.J., Williams A., Barnes S.A., Chappell S.L., Phillips L.J., Robinson B.J., et al., Self-Assembly of amino-thiols via gold-nitrogen links and consequence for in situ elongation of molecular wires on surface-modified electrodes, J. Phys. Chem. C., 2011, 115, 4200-4208. Google Scholar

  • [72] Kim B., Beebe J.M., Jun Y., Zhu X.Y., Frisbie C.D., Correlation between HOMO alignment and contact resistance in molecular junctions: aromatic thiols versus aromatic isocyanides, J. Am. Chem. Soc., 2006, 128, 4970-4971. CrossrefGoogle Scholar

  • [73] Beebe J.M., Engeelkes V.B., Miller L.L., Frisbie C.D., Contact resistance in metal-molecule-metal junctions based on aliphatic SAMs: effects of surface linker and metal work function, J. Am. Chem. Soc., 2002, 124, 11268-11269. CrossrefGoogle Scholar

  • [74] Beebe J.M., Kim B., Frisbie C.D., Kushmerick J.G., Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy, ACS Nano, 2008, 2, 827-832. CrossrefGoogle Scholar

  • [75] Zangmeister C.D., Robey S.W., van Zee R.D., Kushmerik J.G., Naciri J., Yao Y., et al., Fermi level alignment in self-assembled molecular layers: the effect of coupling chemistry, J. Phys. Chem. B., 2006, 110, 17138-17144. CrossrefGoogle Scholar

  • [76] Tan A., Balachandran J., Sadat S., Gavini V., Dunietz B.D., Jang S.-Y., Reddy P., Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions, J. Am. Chem. Soc., 2011, 133, 8838-8841. CrossrefGoogle Scholar

  • [77] Tan A., Balachandran J., Dunietz B.D., Jang S.-Y., Gavini V., Reddy P., Length dependence of frontier orbital alignment in aromatic molecular junctions, Appl. Phys. Lett., 2012, 101, 243107. CrossrefGoogle Scholar

  • [78] Yochelis S., Ktzir E., Kalcheim Y., Gutkin V., Millo O., Paltiel Y., Formation of Au-Silane bonds, Journal of Nanotechnology, 2012, ID 903761, 8 pages. Google Scholar

  • [79] Katsonis N., Marchenko A., Taillemite S., Fichou D., Chouraqui G., Aubert C., Malacria M., A molecular approach to self-assembly of trimethylsilylacetylene derivatives on gold, Chem. Eur. J., 2003, 9, 2574-2581. CrossrefGoogle Scholar

  • [80] Katsonis N., Marchenko A., Fichou D., Barret N., Investigation on the nature of the chemical link between acetylenic organosilane self-assembled monolayers and Au(111) by means of synchrotron radiation photoelectron spectroscopy and scanning tunneling microscopy, Surf. Sci., 2008, 602, 9-16. Google Scholar

  • [81] Watcharinyanon S., Nilsson D., Moons E., Shaporenko A., Zharnikov M., Albinsson B., et al., A spectroscopic study of self-assembled monolayer of porphyrin-functionalized oligo(phenyleneethynylene)s on gold: the influence of the anchor moiety, Phys. Chem. Chem. Phys., 2008, 10, 5264-5275. CrossrefGoogle Scholar

  • [82] Marques-Gonzalez S., Yufit D.S., Howard J.A.K., Martin S., Osorio H.M., Garcia-Suarez V.M., et al., Simplifying the conductance profiles of molecular junctions: the use of the trimethylsilylethynyl moiety as a molecule-gold contact, Dalton Trans., 2013, 42, 338-341. CrossrefGoogle Scholar

  • [83] James D.K., Tour J.M., Molecular wires, Top. Curr. Chem., 2005, 257, 33-62. Google Scholar

  • [84] Terada K.-I., Nakamura H., Kanaizuka K., Haga M.A., Asai Y., Ishida T., Long-range electron transport of ruthenium-centered multilayer films via a stepping-stone mechanism, ACS Nano, 2012, 6, 1988-1999. CrossrefGoogle Scholar

  • [85] Villares A., Lydon D.P., Low P.J., Robinson B.J., Ashwell G.J., Royo F.M., Cea P., Characterization and conductivity of Langmuir-Blodgett films prepared from an amine-substituted oligo(phenylene ethynylene), Chem. Mater., 2008, 20, 258-264. CrossrefGoogle Scholar

  • [86] Martin S., Haiss W., Higgins S., Cea P., Lopez M.C., Nichols R.J., A comprehensive study of the single molecule conductance of alpha,omega-dicarboxylic acid-terminated Alkanes, J. Phys. Chem. C, 2008, 112, 3941-3948. CrossrefGoogle Scholar

  • [87] Xing Y., Park T.H., Venkatramani R., Keinan S., Beratan D.N., Therien M.J., Borguet E., Optimizing single-molecule conductivity of conjugated organic oligomers with carbodithioate linkers, J. Am. Chem. Soc. , 2010, 132, 7946-7956. CrossrefGoogle Scholar

  • [88] Quek S.Y., Kamenetska M., Stigerwald M.L., Choi H.J., Louie S.G., Hybertsen M.S., et al., Mechanically controlled binary conductance switching of a single-molecule junction, Nature Nanotechnol., 2009, 4, 230-234. CrossrefGoogle Scholar

  • [89] Hong W., Li H., Liu S.-X., Fu Y., Li J., Kaliginedi V., et al., Trimethylsilyl-terminated oligo(phenylene ethynylene)s: an approach to single-molecule junctions with covalent Au–C σ-bonds, J. Am. Chem. Soc., 2012, 134, 19425-19431. CrossrefGoogle Scholar

  • [90] Ko C., Huang M., Fu M., Chen C., Superior contact for single-molecule conductance: electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au, J. Am. Chem. Soc., 2010, 132, 756-764. CrossrefGoogle Scholar

  • [91] Park Y.S., Whalley A.C., Kamenetska M., Steigerwald M.L., Hybertsen M.S., Nuckolls C., Venkataraman L., Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines, J. Am. Chem. Soc. , 2007, 129, 15768-15769. CrossrefGoogle Scholar

  • [92] Klausen R.S., Widawsky J.R., Steigerwald M.L., Venkataraman L., Nuckolls C., Conductive molecular silicon, J. Am. Chem. Soc., 2012, 134, 4541-4544. CrossrefGoogle Scholar

  • [93] Moreno-Garcia P., Gulcur M., Manrique D.Z., Pope T., Hong W., Kaliginedi V., et al., Single-molecule conductance of functionalized oligoynes: length dependence and junction evolution, J. Am. Chem. Soc., 2013, 135, 12228-12240. CrossrefGoogle Scholar

  • [94] Arroyo C.R., Tarkuc S., Frisenda R., Seldenthuis J.S., Woerde C.H.M., Eelkema R., et al., Signatures of quantum interference effects on charge transport through a single benzene ring, Ang. Chem. Int. Ed., 2013, 52, 3152-3155. CrossrefGoogle Scholar

  • [95] Parameswaran R., Widawsky J.R., Vázquez H., Park Y.S., Boardman B.M., Nuckolls C., et al., Reliable formation of single molecule junctions with air-stable diphenylphosphine linkers, J. Phys. Chem. Lett. , 2010, 1, 2114-2119. CrossrefGoogle Scholar

  • [96] Engelkes V.B., Beebe J.M., Frisbie C.D., Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance, J. Am. Chem. Soc., 2004, 126, 14287-14296. CrossrefGoogle Scholar

  • [97] Nijhuis C.A., Reus W.F., Whitesides G.M., Molecular rectification in metal-SAM-metal oxide-metal junctions, J. Am. Chem. Soc., 2009, 131, 17814-17827. CrossrefGoogle Scholar

  • [98] Song F., Wells J.W., Handrup K., Li Z.S., Bao S.N., Schulte K., et al., Direct measurement of electrical conductance through a self-assembled molecular layer, Nat. Nanotechnol., 2009, 4, 373-376. CrossrefGoogle Scholar

  • [99] Sergani S., Furmansky Y., Visoly-Fisher I., Metal-free molecular junctions on ITO via amino-silane binding-towards optoelectronic molecular junctions, Nanotechnology, 2013, 24, 455204 (8pp). CrossrefGoogle Scholar

  • [100] Wu J., Agrawal M., Becerril H.A., Bao Z., Liu Z., Chen Y., Peumans P., Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano, 2010, 4, 43-48. CrossrefGoogle Scholar

  • [101] Díez-Pérez I., Hihath J., Lee Y., Yu L., Adamska L., Kozhushner M.A., et al., Rectification and stability of a single molecular diode with controlled orientation, Nat. Chem., 2009, 1, 635-641. CrossrefGoogle Scholar

  • [102] Meyer M.A., Herrmann M., Langer E., Zschech E., In situ SEM observation of electromigration phenomena in fully embedded copper interconnect structures, Microelectron. Eng., 2002, 64, 375-382. CrossrefGoogle Scholar

  • [103] Stewart D.R., Ohlberg D.A.A., Beck P.A., Chen Y., Williams R.S., Jeppesen J.O., et al., Molecule-independent electrical switching in Pt/organic monolayer/Ti devices, Nano Lett., 2004, 4, 133-136. CrossrefGoogle Scholar

  • [104] Teramae Y., Horiguchi K., Hashimoto S., Tsutsui M., Kurokawa S., Sakai A., High-bias breakdown of Au/1,4-benzenedithiol/Au junctions, Appl. Phys. Lett., 2008, 93, 083121. Google Scholar

  • [105] Strachan D.R., Smith D.E., Johnston D.E., Park T.H., Therien M.J., Bonnell D.A., Johnson A.T., Controlled fabrication of nanogaps in ambient environment for molecular electronics, Appl. Phys. Lett., 2005, 86, 043109. CrossrefGoogle Scholar

  • [106] Li C., Bando Y., Golberg D., Current imaging and electromigration-induced splitting of GaN nanowires as revealed by conductive atomic force microscopy, ACS Nano, 2010, 4, 2422-2428. CrossrefGoogle Scholar

  • [107] Ward D.R., Scott G.D., Keane Z.K., Halas N.J., Natelson D., Electronic and optical properties of electromigrated molecular junctions, J. Phys: Condens. Matter 2008, 20, 374118. CrossrefGoogle Scholar

  • [108] Arielly R., Ofarim A., Noy G., Slelzer Y., Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies, Nano Lett., 2011, 11, 2968-2972. CrossrefGoogle Scholar

  • [109] Keller A., Atabek O., Ratner M., Mujica V., Laser-assisted conductance of molecular wires, J. Phys. B At. Mol. Opt. Phys, 2002, 35, 4981-4988. CrossrefGoogle Scholar

  • [110] Yan H., Bergren A.J., McCreery R.L., All-carbon molecular tunnel junctions, J. Am. Chem. Soc., 2011, 133, 19168-19177. CrossrefGoogle Scholar

  • [111] Seo S., Min M., Lee S.M., Lee H., Photo-switchable molecular monolayer anchored between highly transparent and flexible graphene electrodes, Nat. Commun., 2013, 4, 1920-1927. CrossrefGoogle Scholar

  • [112] Yan H., Bergren A.J., McCreery R.L., Della Rocca M.L., Martin P., Lafarge P., Lacroix J.C., Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions, Proc. Natl. Acad. Sci. U.S.A., 2013, 110, 5326-5330. Google Scholar

  • [113] Shibata K., Wada H., Ishikawa K., Takezoe H., Mori T., (Tetrathiafulvalene)(tetracyanoquinodimethane) as a low-contact-resistance electrode for organic transistors, Appl. Phys. Lett., 2007, 90, 193509. CrossrefGoogle Scholar

  • [114] Lim J.A., Cho J.H., Park Y.D., Kim D.H., Hwang M., Cho K., Solvent effect of inkjet printed source/drain electrodes on electrical properties of polymer thin-film transistors, Appl. Phys. Lett., 2006, 88, 082102. CrossrefGoogle Scholar

  • [115] Koezuka H., Tsumura A., Fuchigami H., Kuramoto K., Polythiophene field-effect transistor with polypyrrole worked as source and drain electrodes, Appl. Phys. Lett., 1993, 62, 1794. CrossrefGoogle Scholar

  • [116] Gates B.D., Flexible Electronics, Science, 2009, 323, 1566-1567. Google Scholar

  • [117] Pinzón J.R., Villalta-Cerdas A., Echegoyen L., Fullerenes, carbon nanotubes, and graphene for molecular electronics, Top. Curr. Chem., 2012, 312, 127-174. Google Scholar

  • [118] MacLeod J.M., Rosei F., Molecular self-assembly on graphene, Small, 2014, 10, 1038-1049. CrossrefGoogle Scholar

  • [119] Reina A., Jia X., Ho J., Nezich D., Son H., Bulovic V., et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 2009, 9, 30-35. CrossrefGoogle Scholar

  • [120] Long B., Manning M., Burke M., Szafranek B.N., Visimberga G., Thompson D., et al., Non-covalent functionalization of graphene using self-assembly of alkane-amines, Adv. Funct. Mater., 2012, 22, 717-725. CrossrefGoogle Scholar

  • [121] Du J., Pei S., Ma L., Cheng H.-M., 25th Anniversary Article: Carbon nanotube- and graphene- based transparent conductive films for optoelectronic devices, Adv. Mater., 2014, 26, 1958-1991. CrossrefGoogle Scholar

  • [122] Huang X., Zeng Z., Fan Z., Liu J., Zhang H., Graphene-based electrodes, Adv. Mater., 2012, 24, 5979-6004. CrossrefGoogle Scholar

  • [123] Kim K.S., Zhao Y., Jang H., Lee S.Y., Kim J.M., Kim K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 2009, 457, 706-710. Google Scholar

  • [124] Jo G., Choe M., Lee S., Park W., Kahng Y.H., Lee T., The application of graphene as electrodes in electrical and optical devices, Nanotechnology, 2012, 23, 112001. CrossrefGoogle Scholar

  • [125] Cerofolini C.F., Romano E., Molecular electronics in silico, Appl. Phys. A, 2008, 91, 181-210. CrossrefGoogle Scholar

  • [126] Aswal D.K., Koiry S.P., Jousselme B., Gupta S.K., Palacin S., Yakhmi J.V., Hybrid molecule-on-silicon nanoelectronics: Electrochemical processes for grafting and printing of monolayers, Physica E, 2009, 41, 325-344. CrossrefGoogle Scholar

  • [127] Heath J.R., Molecular Electronics, Annu. Rev. Mater. Res., 2009, 39, 1-23. CrossrefGoogle Scholar

  • [128] Faber E.J., de Smet L.C., Olthuis W., Zuilof H., Sudhölter, E.J., Bergveld P., van der Berg A., Si-C linked organic monolayers on crystalline silicon surfaces as alternative gate insulators, Chem. Phys. Chem., 2005, 6, 2153-2166. Google Scholar

  • [129] Aswal D.K., Lenfant S., Guerin D., Yakhmi J.V., Vuillaume D., Self assembled monolayers on silicon for molecular electronics, Anal. Chim. Acta, 2006, 568, 84-108. Google Scholar

  • [130] Maldonado S., Plass K.E., Knapp D., Lewis N.S., Electrical properties of junctions between Hg and Si(111) surfaces functionalized with short-chain alkyls, J. Phys. Chem. C., 2007, 111, 17690-17699. Google Scholar

  • [131] Green J.E., Wong S.J., Heath J.R., Hall mobility measurements and chemical stability of ultrathin, methylated Si(111)-on-insulator films, J. Phys. Chem. C., 2008, 112, 5185-5189. Google Scholar

  • [132] Nozaki D., Cuniberti G., Silicon-based molecular switch junctions, Nano Res. , 2009, 2, 648-659. CrossrefGoogle Scholar

  • [133] Clément N., Guérin D., Pleutin S., Godey S., Vuillaume D., Role of hydration on the electronic transport through molecular junctions on silicon, J. Phys. Chem. C., 2012, 116, 17753-17763. Google Scholar

  • [134] Haj-Yahya A.-E., Yaffe O., Bendikov T., Cohen H., Feldman Y., Vilan A., Cahen D., Substituent variation drives metal/monolayer/semiconductor junctions from strongly rectifying to ohmic behavior, Adv. Mater., 2013, 25, 702-706. CrossrefGoogle Scholar

  • [135] Yao J., Zhong L., Natelson D., Tour J.M., Silicon Oxide: A Non-innocent surface for molecular electronics and nanoelectronics dtudies, J. Am. Chem. Soc., 2011, 133, 941-948. CrossrefGoogle Scholar

  • [136] Terry J., Linford M.R., Wigren C., Cao R., Pianetta P., Chidsey C.E.D., Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction, Appl. Phys. Lett., 1997, 71, 1056-1058. CrossrefGoogle Scholar

  • [137] Linford M.R., Chidsey C.E.D., Alkyl monolayers covalently bonded to silicon surfaces, J. Am. Chem. Soc., 1993, 115, 12631-12632. CrossrefGoogle Scholar

  • [138] Linford M.R., Fenter P., Eisenberger P.M., Chidsey C.E.D., Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon, J. Am. Chem. Soc., 1995, 117, 3145-3155. Google Scholar

  • [139] Hamers R.J., Hovis J.S., Lee S.W., Liu H.-B., Shan J., Formation of ordered, anisotropic organic monolayers on the Si(001) surface, J. Phys. Chem. B, 1997, 101, 1489-1492. CrossrefGoogle Scholar

  • [140] Teplyakov A.V., Kong M.J., Bent S.F., Vibrational spectroscopic studies of Diels-Alder reactions with the Si(100)-2x1 surface as a dienophile, J. Am. Chem. Soc., 1997, 119, 11100-11101. CrossrefGoogle Scholar

  • [141] Wolkow R.A., Controlled molecular adsorption on silicon: laying a foundation for molecular devices, Annu. Rev. Phys. Chem., 1999, 50, 413-441. CrossrefGoogle Scholar

  • [142] Lavi A., Cohen H., Bendikov T., Vilan A., Cahen D., Si-C-bound alkyl chains on oxide-free Si: towards versatile solution preparation of electronic transport quality monolayers, Phys. Chem. Chem. Phys., 2011, 13, 1293-1296. CrossrefGoogle Scholar

  • [143] Bent S.F., Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects, Surf. Sci., 2002, 500, 879-903. Google Scholar

  • [144] Cleland G., Horrocks B.R., Houlton A., Direct functionalization of silicon via the self-assembly of alcohols, J. Chem. Soc., Faraday Trans., 1995, 91, 4001-4003. Google Scholar

  • [145] Zhu X.-Y., Boiadjiev V., Mulder J.A., Hsung R.P., Major R.C., Molecular assemblies on silicon surfaces via Si-O linkages, Langmuir, 2000, 16, 6766-6772. CrossrefGoogle Scholar

  • [146] Roth C.A., Silylation of organic chemicals, Ind. Eng. Chem. Prod. Res. Dev., 1972, 11, 134-139. CrossrefGoogle Scholar

  • [147] Ulman A., Self-Assembled monolayers of alkyltrichlorosilanes - building blocks for future organic materials, Adv. Mater., 1990, 2, 573-582. CrossrefGoogle Scholar

  • [148] Wasserman S.R., Tao Y.-T., Whitesides G.M., Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates, Langmuir, 1989, 5, 1074-1087. CrossrefGoogle Scholar

  • [149] Stewart M.P., Maya F., Kosynkin D.V., Dirk S.M., Stapleton J.J., McGuiness C.L., et al., Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryidiazonium salts, J. Am. Chem. Soc., 2004, 126, 370-378. CrossrefGoogle Scholar

  • [150] Lee E.J., Bitner T.W., Ha J.S., Shane M.J., Sailor M.J., Light-induced reactions of porous and single-crystal Si surfaces with carboxylic acids, J. Am. Chem. Soc., 1996, 118, 5375-5382. CrossrefGoogle Scholar

  • [151] Effenberger F., Gotz G., Bidlingmaier B., Wezstein M., Photoactivated preparation and patterning of self-assembled monolayers with 1-alkenes and aldehydes on silicon hydride surfaces, Ang. Chem. Int. Ed., 1998, 37, 2462-2464. Google Scholar

  • [152] Mischki T.K., Donkers R.L., Eves B.J., Lopinski G.P., Wayner D.D.M., Reaction of alkenes with hydrogen-terminated and photooxidized silicon surfaces. A comparison of thermal and photochemical processes, Langmuir, 2006, 22, 8359-8365. CrossrefGoogle Scholar

  • [153] Cicero R.L., Linford M.R., Chidsey C.E.D., Photoreactivity of unsaturated compounds with hydrogen-terminated silicon(111), Langmuir, 2000, 16, 5688-5695. CrossrefGoogle Scholar

  • [154] Scheres L., Giesbers M., Zuilhof H., Self-assembly of organic monolayers onto hydrogen-terminated silicon: 1-alkynes are better than 1-alkenes, Langmuir, 2010, 26, 10924-10929. Google Scholar

  • [155] Ishida T., Terada K., Hasegawa K., Kuwahata H., Kusama K., Sato R., et al., Self-assembled monolayer and multilayer formation using redox-active Ru complex with phosphonic acids on silicon oxide surface, Appl. Surf. Sci., 2009, 255, 8824-8830. CrossrefGoogle Scholar

  • [156] Thissen P., Peixoto T., Longo R.C., Peng W., Schmidt W.G., Cho K., Chabal Y.J., Activation of surface hydroxyl groups by modification of H-terminated Si(111) surfaces, J. Am. Chem. Soc., 2012, 134, 8869-8874. CrossrefGoogle Scholar

  • [157] Bora A., Pathak A., Liao K.-C., Vexler M.I., Kuligk A., Cattani-Scholz A., et al., Organophosphonates as model system for studying electronic transport through monolayers on SiO2/Si surfaces, Appl. Phys. Lett., 2013, 241602. CrossrefGoogle Scholar

  • [158] Bansal A., Li X., Lauermann I., Lewis N.S., Alkylation of Si surfaces using a two-step halogenation Grignard route, J. Am. Chem. Soc., 1996, 118, 7225-7226. CrossrefGoogle Scholar

  • [159] Song J.H., Sailor M.J., Functionalization of nanocrystalline porous silicon surfaces with aryllithium reagents: formation of silicon-carbon bonds by cleavage of silicon-silicon bonds, J. Am. Chem. Soc., 1998, 120, 2376-2381. CrossrefGoogle Scholar

  • [160] Bansal A., Li X., Yi S.I., Weinberg W.H., Lewis N.S., Spectroscopic studies of the modification of crystalline Si(111) surfaces with covalently-attached alkyl chains using a chlorination/alkylation method, J. Phys. Chem. B., 2001, 105, 10266-10277. CrossrefGoogle Scholar

  • [161] de Villeneuve C.H., Pinson J., Bernard M.C., Allongue P., Electrochemical formation of close-packed phenyl layers on Si(111), J. Phys. Chem. B, 1997, 101, 2415-2420. CrossrefGoogle Scholar

  • [162] Gupta S.K., Koiry S.P., Chauhan A.K., Padma N., Aswal D.K., Yakhmi J.V., Self-assembled and electrochemically deposited mono/multilayers for molecular electronics applications, Appl. Surf. Sci., 2009, 256, 407-413. CrossrefGoogle Scholar

  • [163] Bigelow J., The complete works of Benjamin Franklin. G. P. Putnam’s Sons, New York., 1887, p. 253. Google Scholar

  • [164] Pockels A., Surface tension, Nature, 1891, 43, 437-439. Google Scholar

  • [165] Rayleigh L., Phil. Mag., 1899, 48, 321-337. Google Scholar

  • [166] Langmuir I., The constitution and fundamental properties of solids and liquids. II. Liquids, J. Am. Chem. Soc., 1917, 39, 1848-1906. CrossrefGoogle Scholar

  • [167] Blodgett K.A., Films built by depositing successive monomolecular layers on a solid surface, J. Am. Chem. Soc., 1935, 57, 1007-1022. CrossrefGoogle Scholar

  • [168] Langmuir I., Schaefer V.J., Activities of urease and pepsin monolayers, J. Am. Chem. Soc., 1938, 60, 1351-1360. CrossrefGoogle Scholar

  • [169] Kuhn H., Classical aspects of energy transfer in molecular systems, J. Chem. Phys., 1970, 53, 101-108. Google Scholar

  • [170] Gaines G.L., Insoluble monolayers at liquid-gas interface, 1966, New York: Interscience. John Wiley & Sons. Google Scholar

  • [171] Petty M.C., Langmuir-Blodgett films: an introduction, 1996, Cambridge: Cambridge University Press. Google Scholar

  • [172] Gyepi-Garbrah S., Šilerová R., The first direct comparison of self-assembly and Langmuir-Blodgett deposition techniques: two routes to highly organized monolayers, Phys. Chem. Chem. Phys., 2002, 4, 3436-3442. CrossrefGoogle Scholar

  • [173] Cea P., Lopez M.C., Martin S., Villares A., Pera G., Giner I., The use of cyclic voltammetry to probe the passivation of electrode surfaces by well-ordered self-assembly and Langmuir-Blodgett films an advanced undergraduate laboratory experiment in surface science and nanomaterials chemistry, J. Chem. Edu., 2009, 86, 723-725. Google Scholar

  • [174] Pera G., Villares A., Lopez M.C., Cea P., Lydon D.P., Low P.J., Preparation and characterization of Langmuir and Langmuir-Blodgett films from a nitrile-terminated tolan, Chem. Mater., 2007, 19, 857-864. CrossrefGoogle Scholar

  • [175] Mann B., Kuhn H., Tunneling through fatty acid salt monolayers, J. Appl. Phys., 1971, 42, 4398-4405. CrossrefGoogle Scholar

  • [176] Ashwell G.J., Sambles J.R., Martin A.S., Parker W.G., Szablewski M., Rectifying characteristics of MG/(C16H33-Q3CNQ LB film)/PT structures, J. Chem. Soc. Chem. Comm., 1990, 19, 1374-1376. CrossrefGoogle Scholar

  • [177] Martin A.S., Sambles J.R., Ashwell G.J., Molecular rectifier, Phys. Rev. Lett., 1993, 70, 218-221. CrossrefGoogle Scholar

  • [178] Metzer R.M., Chen B., Höpfner U., Lakshmikantham M.V., Vuillaume D., Kawai T., et al., Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide, J. Am. Chem. Soc., 1997, 119, 10455-10466. CrossrefGoogle Scholar

  • [179] Xu T., Peterson I.R., Lakshmikantham M.V., Metzger R.M., Rectification by a monolayer of hexadecylquinolinium tricyanoquino-dimethanide between gold electrodes, Angew. Chem. Int. Ed., 2001, 40, 1749-1752. CrossrefGoogle Scholar

  • [180] Metzger R.M., Xu T., Peterson I.R., Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes, J. Phys. Chem. B, 2001, 105, 7280-7290. CrossrefGoogle Scholar

  • [181] Zhou S., Liu Y., Qiu Y., Huang X., Li Y., Jiang L., Zhu D., Synthetic molecular rectifier of a Langmuir-Blodgett film based on a novel asymmetrically substituted dicyano-tri-tert-butylphthalocyanine, Adv. Funct. Mater., 2002, 12, 65-68. CrossrefGoogle Scholar

  • [182] Collier C.P., Wong E.W., Belohradsky M., Raymo F.M., Stoddart J.F., Kuekes P.J., et al., Electronically configurable molecular-based logic gates, Science, 1999, 285, 391-394. Google Scholar

  • [183] Collier C.P., Mattersteig G., Wong E.W., Luo Y., Beverly K., Sampaio J., et al., A Google Scholar

  • [2]catenane-based solid state electronically reconfigurable switch, Science, 2000, 289, 1172-1175. Google Scholar

  • [184] Villares A., Lydon D.P., Porrès L., Beeby A., Low P.J., Cea P., Royo F.M., Preparation of ordered films containing a phenylene ethynylene oligomer by the Langmuir-Blodgett technique, J. Phys. Chem. B, 2007, 111, 7201-7209. CrossrefGoogle Scholar

  • [185] Villares A., Martin S., Giner I., Diaz J., Lydon D.P., Low P.J., Cea P., The use of scanning polarization force microscopy to study the miscibility of a molecular wire candidate and an insulating fatty acid in mixed LB films, Soft Matter, 2008, 4, 1508-1514. CrossrefGoogle Scholar

  • [186] Villares A., Pera G., Martín S., Nichols R.J., Lydon D.P., Applegarth L., et al., Fabrication, characterization, and electrical properties of Langmuir−Blodgett films of an acid terminated phenylene−ethynylene oligomer, Chem. Mater., 2010, 22, 2041-2049. CrossrefGoogle Scholar

  • [187] Tang Z.X., Hicks R.K., Magyar R.J., Tretiak S., Gao Y., Wang H.L., Synthesis and characterization of amphiphilic phenylene ethynylene oligomers and their Langmuir-Blodgett films, Langmuir, 2006, 22, 8813-8820. CrossrefGoogle Scholar

  • [188] Villares A., Lydon D.P., Robinson B.J., Ashwell G., Royo F.M., Low P.J., Cea P., Langmuir-Blodgett films incorporating molecular wire candidates of ester-substituted oligo(phenylene-ethynylene) derivatives, Surf. Sci., 2008, 602, 3683-3687. Google Scholar

  • [189] Ballesteros L.M., Martín S., Pera G., Schauer P.A., Kay N.J., López M.C., et al., Directionally oriented LB films of an OPE derivative: assembly, characterization, and electrical properties Langmuir, 2011, 27, 3600-3610. Google Scholar

  • [190] Xu Z.-G., Wu G.-P., Wang L.-J., Sun C.-L., Shi Z.-F., Zhang H.L., Wang Q., Distinct exciton migration pathways induced by steric hindrance in Langmuir-Blodgett films of two novel cruciform molecular wires, Chem. Phys. Lett., 2011, 518, 65-69. Google Scholar

  • [191] Donley C.L., Blackstock J.J., Stickle W.F., Stewart D.R., Williams R.S., In-situ infrared spectroscopy of buried organic monolayers: Influence of the substrate on titanium reactivity with a Langmuir-Blodgett film, Langmuir, 2007, 23, 7620-7625. CrossrefGoogle Scholar

  • [192] Li X., Zhang, G. Bai, X., Sun X., Wang X., Wang E., Dai H., Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol., 2008, 3, 538-542. CrossrefGoogle Scholar

  • [193] Cote L.J., Kim F.S., Huang J., Langmuir-Blodgett assembly of graphite oxide single layers, J. Am. Chem. Soc., 2009, 131, 1043-1049. CrossrefGoogle Scholar

  • [194] Delamar M., Hitmi R., Pinson J., Saveant J.-M., Covalent modification of carbon surfaces by grafting of functionalizes aryl radicals produced from electrochemical reduction of diazonium salts, J. Am. Chem. Soc., 1992, 114, 5883-5884. CrossrefGoogle Scholar

  • [195] Pinson J., Podvorica F., Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts, Chem. Soc. Rev., 2005, 34, 429-439. CrossrefGoogle Scholar

  • [196] McCreery R.L., Wu J., Kalakodimi R.P., Electron transport and redox reactions in carbon-based molecular electronic junctions, Phys. Chem. Chem. Phys., 2006, 8, 2572-2590. CrossrefGoogle Scholar

  • [197] McCreery R.L., Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev., 2008, 108, 2646-2687. CrossrefGoogle Scholar

  • [198] Ru J., Szeto B., Bonifas A., McCreery R.L., Microfabrication and integration of diazonium-based aromatic molecular junctions, ACS. Appl. Mater. Interf., 2010, 2, 3693-3701. CrossrefGoogle Scholar

  • [199] Bélanger D., Pinson J., Electrografting: a powerful method for surface modification, Chem. Soc. Rev., 2011, 40, 3995-4048. CrossrefGoogle Scholar

  • [200] Martin P., Della Rocca M.L., Anthore A., Lafarge P., Lacroix J.C., Organic electrodes based on grafted oligothiophene units in ultrathin, large-area molecular junctions, J. Am. Chem. Soc., 2012, 134, 154-157. Google Scholar

  • [201] Santos L., Ghilane J., Lacroix J.C., Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds, J. Am. Chem. Soc., 2012, 134, 5476-5479. CrossrefGoogle Scholar

  • [202] Santos L., Ghilane J., Martin P., Lacaze P.-C., Randriamahazaka H., Lacroix J.C., Host-Guest Complexation: A convenient route for the electroreduction of diazonium salts in aqueous media and the formation of composite materials, J. Am. Chem. Soc., 2010, 132, 1690-1698. CrossrefGoogle Scholar

  • [203] Toupin M., Bélanger D., Thermal stability study of aryl modified carbon black by in situ generated diazonium salt, J. Phys. Chem.C., 2007, 111, 5394-5401. Google Scholar

  • [204] McCreery R.L., The merger of electrochemistry and molecular electronics, Chem. Rec., 2012, 12, 149-163. CrossrefGoogle Scholar

  • [205] Koiry S.P., Aswal D.K., Saxena V., Padma N., Chauhan A.K., Joshi N., et al., Electrochemical grafting of octyltrichlorosilane monolayer on Si Appl. Phys. Lett., 2007, 90, 113118. CrossrefGoogle Scholar

  • [206] Palacin S., Bureau C., Charlier J., Deniau G., Mouanda B., Viel P., Molecule-to-metal bonds: electrografting polymers on conducting surfaces, Chem. Phys. Chem., 2004, 5, 1468-1481. Google Scholar

  • [207] Barbier B., Pinson J., Desarmot G., Sánchez M., Electrochemical bonding of amines to carbon-fiber surfaces toward improved carbon-epoxy Composites, J. Electrochem. Soc., 1990, 137, 1757-1764. CrossrefGoogle Scholar

  • [208] Gallardo I., Pinson J., Vilà N., Spontaneous attachment of amines to carbon and metallic surfaces, J. Phys. Chem. B, 2006, 110, 19521-19529. CrossrefGoogle Scholar

  • [209] Brooksby P.A., Downard A.J., Yu S.S.C., Effect of applied potential on arylmethyl films oxidatively grafted to carbon surfaces, Langmuir, 2005, 21, 11304-11311. CrossrefGoogle Scholar

  • [210] Ricci A.M., Calvo E.J., Martin S., Nichols R.J., Electrochemical scanning tunneling spectroscopy of redox-active molecules bound by Au-C bonds, J. Am. Chem. Soc., 2010, 132, 2494-2495. CrossrefGoogle Scholar

  • [211] Laurentius L., Stoyanov S.R., Guserov S., Kovalenko A., Du R., Lopinski G.P., McDermott M.T., Diazonium-derived aryl films on gold nanoparticles: evidence for a carbon–gold covalent bond, ACS Nano, 2011, 5, 4219-4227. CrossrefGoogle Scholar

  • [212] Haick H., Cahen D., Making contact: Connecting molecules electrically to the macroscopic world, Prog. Surf. Sci., 2008, 83, 217-261. CrossrefGoogle Scholar

  • [213] Vuillaume D., Molecular-scale electronics, C. R. Phys., 2008, 9, 78-94. Google Scholar

  • [214] Akkerman H.B., de Boer B., Electrical conduction through single molecules and self-assembled monolayers, J. Phys.: Condens. Matter, 2008, 20, 013001 (20pp). CrossrefGoogle Scholar

  • [215] Vuillaume D., Molecular nanoelectronics, Proc. IEEE, 2010, 98, 2111-2123. Google Scholar

  • [216] Walker A.V., Toward a new world of molecular devices: making metallic contacts to molecules, J. Vac. Sci. Technol. A, 2013, 31, 050816. CrossrefGoogle Scholar

  • [217] Holmlin R.E., Haag R., Chabinyc M.L., Ismagilov R.F., Cohen A.E., Terfort A., et al., Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers, J. Am. Chem. Soc., 2001, 123, 5075-5085. CrossrefGoogle Scholar

  • [218] Rampi M.A., Schueller O.J.A., Whitesides G.M., Alkanethiol self-assembled monolayers as the dielectric of capacitors with nanoscale thickness, Appl. Phys. Lett., 1998, 72, 1781-1783. CrossrefGoogle Scholar

  • [219] Chiechi R.C., Weiss E.A., Dickey M.D., Whitesides G.M., Eutectic gallium-indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers, Angew. Chem. Int. Ed., 2008, 47, 142-144. CrossrefGoogle Scholar

  • [220] Yaffe O., Scheres L., Segev L., Biller A., Ron I., Salomon E., et al., Hg/Molecular monolayer−Si junctions: electrical interplay between monolayer properties and semiconductor doping density, J. Phys. Chem. C., 2010, 114, 10270-10279. Google Scholar

  • [221] Popoff R.T.W., Kavanagh K.K., Yu H.-Z., Preparation of ideal molecular junctions: depositing non-invasive gold contacts on molecularly modified silicon, Nanoscale, 2011, 3, 1434-1445. CrossrefGoogle Scholar

  • [222] Har-Lavan R., Yaffe O., Joshi P., Kazaz R., Cohen H., Cahen D., Ambient organic molecular passivation of Si yields near-ideal, Schottky-Mott limited, junctions, AIP Advances, 2012, 2, 012164-13. Google Scholar

  • [223] Wang W., Lee T., Kretzschmar I., Reed M.A., Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer, Nano Lett., 2004, 4, 643-646. CrossrefGoogle Scholar

  • [224] Nakaya M., Shikishima M., Shibuta M., Hirata N., Eguchi T., Nakajima A., Molecular-scale and wide-energy-range tunneling spectroscopy on self-assembled monolayers of alkanethiol molecules, ACS Nano, 2012, 6, 8728-8734. CrossrefGoogle Scholar

  • [225] Salomon A., Cahen D., Lindsay S., Tomfohr J., Engelkes V.B., Frisbie C.D., Comparison of electronic transport measurements on organic molecules, Adv. Mater., 2003, 15, 1881-1890. CrossrefGoogle Scholar

  • [226] Petrangolini P., Alessandrini A., Berti L., Facci P., An electrochemical scanning tunneling microscopy study of 2-(6-mercaptoalkyl)hydroquinone molecules on Au(111), J. Am. Chem. Soc., 2010, 132, 7445-7453. CrossrefGoogle Scholar

  • [227] Wold D.J., Frisbie C.D., Formation of metal-molecule-metal tunnel junctions: microcontacts to alkanethiol monolayers with a conducting AFM tip, J. Am. Chem. Soc., 2000, 122, 2970-2971. CrossrefGoogle Scholar

  • [228] Wold D.J., Haag R., Rampi M.A., Frisbie C.D., Distance dependence of electron tunneling through self-assembled monolayers measured by conducting probe atomic force microscopy: unsaturated versus saturated molecular junctions, J. Phys. Chem. B, 2002, 106, 2813-2816. CrossrefGoogle Scholar

  • [229] Wold D.J., Frisbie C.D., Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy, J. Am. Chem. Soc., 2001, 123, 5549-5556. CrossrefGoogle Scholar

  • [230] Ballesteros L.M., Martin S., Cortés J., Marqués-Gonzalez S., Pérez-Murano F., Nichols R.J., et al., From an organometallic monolayer to an organic monolayer covered by metal nanoislands: a simple thermal protocol for the fabrication of the top contact electrode in molecular electronic devices, Adv. Mater. Interfaces, 2014, DOI: 10.1002/admi.201400128. CrossrefGoogle Scholar

  • [231] Walker A.V., Tighe T.B., Stapleton J., Haynie B.C., Upilli S., Allara D.L., Winograd N., Interaction of vapor-deposited Ti and Au with molecular wires, Appl. Phys. Lett., 2004, 84, 4008-4010. CrossrefGoogle Scholar

  • [232] Walker A.V., Tighe T.B., Cabarcos O.M., Reinard M.D., Haynie B.C., Uppili S., et al., The dynamics of noble metal atom penetration through methoxy-terminated alkanethiolate monolayers, J. Am. Chem. Soc., 2004, 126, 3954-3963. CrossrefGoogle Scholar

  • [233] Aswal D.K., Lenfant S., Guerin D., Yakhmi J.V., Vuillaume D., A tunnel current in self-assembled monolayers of 3-mercaptopropyltrimethoxysilane, Small, 2005, 1, 725-729. CrossrefGoogle Scholar

  • [234] Hooper A., Fisher G.L., Konstadinidis K., Jung D., Nguyen H., Opila R., et al., Chemical effects of methyl and methyl ester groups on the nucleation and growth of vapor-deposited aluminum films, J. Am. Chem. Soc., 1999, 121, 8052-8064. CrossrefGoogle Scholar

  • [235] Fisher G.L., Walker A.V., Hooper A.E., Tighe T.B., Bahnck K.B., Skriba H.T., et al., Bond insertion, complexation, and penetration pathways of vapor-deposited aluminum atoms with HO- and CH3O-terminated organic monolayers, J. Am. Chem. Soc., 2002, 124, 5528-5541. CrossrefGoogle Scholar

  • [236] Ahn H., Whitten J.E., Vapor-deposition of aluminum on thiophene-terminated self-assembled monolayers on gold, J. Phys. Chem. B., 2003, 107, 6565-6572. CrossrefGoogle Scholar

  • [237] de Boer B., Frank M.M., Chabal Y.J., Jiang W., Garfunkel E.L., Bao Z., Metallic contact formation for molecular electronics: interactions between vapor-deposited metals and self-assembled monolayers of conjugated mono- and dithiols, Langmuir, 2004, 20, 1539-1542. CrossrefGoogle Scholar

  • [238] Weckenmann U., Mittler S., Krämer S., Aliganga A.K.A., Fisher R.A., A study on the selective organometallic vapor deposition of palladium onto self-assembled monolayers of 4,4’-biphenyldithiol, 4-biphenylthiol, and 11-mercaptoundecanol on polycrystalline silver, Chem. Mater., 2004, 16, 621-628. Google Scholar

  • [239] Baunach T., Ivanova V., Kolb D.M., Boyen H.G., Ziemann P., Buttner M., Oelhafen P., A new approach to the electrochemical metallization of organic monolayers: palladium deposition onto a 4,4’-dithiodipyridine self-assembled monolayer, Adv. Mater., 2004, 16, 2024-2028. CrossrefGoogle Scholar

  • [240] Maitani M.M., Daniel T., Cabarcos O.M., Allara D.L., Nascent metal atom condensation in self-assembled monolayer matrices: coverage-driven morphology transitions from buried adlayers to electrically active metal atom nanofilaments to overlayer clusters during aluminum atom deposition on alkanethiolate/gold monolayers, J. Am. Chem. Soc., 2009, 131, 8016-8029. Google Scholar

  • [241] Maitani M.M., Allara D.L., Issues and challenges in vapor-deposited top metal contacts for molecule-based electronic devices, Top. Curr. Chem., 2012, 312, 239-274. Google Scholar

  • [242] Lovrinčić R., Kraynis O., Har-Lavan R., Haj-Yahya A.-E., Li W., Vilan A., Cahen D., A new route to nondestructive top-contacts for molecular electronics on Si: Pb evaporated on organic monolayers, J. Phys. Chem. Lett., 2013, 4, 426-430. CrossrefGoogle Scholar

  • [243] Johnson R.W., Hultqvist A., Bent S.F., A brief review of atomic layer deposition: from fundamentals to applications, Mater Today, 2014, 17, 236-246. CrossrefGoogle Scholar

  • [244] Hämäläinen J., Ritala M., Leskela M., Atomic layer deposition of noble metals and their oxides, Chem. Mater., 2014, 26, 786-801. CrossrefGoogle Scholar

  • [245] Preiner M.J., Melosh N.A., Creating large area molecular electronic junctions using atomic layer deposition, Appl. Phys. Lett., 2008, 92, 213301. CrossrefGoogle Scholar

  • [246] Seitz O., Dai M., Aguirre-Tostado F.S., Wallace R.M., Chabal Y.J., Copper-Metal Deposition on Self assembled monolayer for making top contacts in molecular electronic devices, J. Am. Chem. Soc., 2009, 131, 18159-18167. Google Scholar

  • [247] Akkerman H.B., Blom P.W.M., de Leeuw D.M., de Boer B., Towards molecular electronics with large-area molecular junctions, Nature, 2006, 441, 69-72. Google Scholar

  • [248] Tai Y., Shaporenko A., Noda H., Grunze M., Zharnikov M., Fabrication of stable metal films on the surface of self-assembled monolayers, Adv. Mater., 2005, 17, 1745-1749. CrossrefGoogle Scholar

  • [249] Tai Y., Shaporenko A., Grunze M., Zharnikov M., Effect of irradiation dose in making an insulator from a self-assembled monolayer, J.Phys. Chem. B., 2005, 109, 19411-19415. CrossrefGoogle Scholar

  • [250] Noda H., Tai Y., Shaporenko A., Grunze M., Zharnikov M., Electrochemical characterizations of nickel deposition on aromatic dithiol monolayers on gold electrodes, J.Phys. Chem. B., 2005, 109, 22371-22376. CrossrefGoogle Scholar

  • [251] Chesneau F., Terfort A., Zharnikov M., Nickel deposition on fluorinated, aromatic self-assembled mono layers: chemically induced cross-linking as a tool for the preparation of well-defined top metal films, J. Phys. Chem. C., 2014, 118, 11763-11773. Google Scholar

  • [252] Dürr A.C., Schreiber F., Kelsch M., Carstanjen H.D., Dosch H., Morphology and thermal stability of metal contacts on crystalline organic thin films, Adv. Mater., 2002, 14, 961-963. CrossrefGoogle Scholar

  • [253] Silien C., Buck M., On the role of extrinsic and intrinsic defects in the underpotential deposition of Cu on thiol-modified Au(111) electrodes, J. Phys. Chem. C., 2008, 112, 3881-3890. Google Scholar

  • [254] Popoff R.T.W., Zavareh A.A., Kavanagh K.L., Yu H.-Z., Reduction of gold penetration through phenyl-terminated alkyl monolayers on silicon, J. Phys. Chem. C., 2012, 116, 17040-17047. Google Scholar

  • [255] Pattanaik G., Shao W., Swami N., Zangari G., Electrolytic gold deposition on dodecanethiol-modified gold films, Langmuir, 2009, 24, 5031-5038. CrossrefGoogle Scholar

  • [256] Chiu Y.-D., Dow W.-P., Krug K., Liu Y.-F., Lee Y.-L., Yau S.-L., Adsorption and desorption of Bis-(3-sulfopropyl) disulfide during Cu electrodeposition and stripping at Au electrodes, Langmuir, 2012, 28, 14476-14487. CrossrefGoogle Scholar

  • [257] Silien C., Lahaye D., Caffio M., Schaub R., Champness N.R., Buck M., Electrodeposition of palladium onto a pyridine-terminated self-assembled monolayer, Langmuir, 2011, 27, 2567-2574. CrossrefGoogle Scholar

  • [258] Daniel M.-C., Astruc D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 2004, 104, 293-346. CrossrefGoogle Scholar

  • [259] Osorio H.M., Cea P., Ballesteros L.M., Gascon I., Marqués-González S., Nichols R.J., et al., Preparation of nascent molecular electronic devices from gold nanoparticles and terminal alkyne functionalised monolayer films, J. Mater. Chem. C., 2014, 2, 7348-7355. Google Scholar

  • [260] Abad J.M., Tesio A.Y., Pariente F., Lorenzo E., Reaction Mechanism of monoamine oxidase from QM/MM calculations, J. Phys. Chem. B, 2013, 117, 22087-22093. Google Scholar

  • [261] Xia Y., Whitesides G.M., Soft lithography, Angew. Chem. Int. Ed. , 1998, 37, 550-575. CrossrefGoogle Scholar

  • [262] Loo Y.L., Willett R.L., Baldwin K.W., Rogers J.A., Interfacial chemistries for nanoscale transfer printing, J. Am. Chem. Soc., 2002, 124, 7654-7655. CrossrefGoogle Scholar

  • [263] Loo Y.L., Lang D.V., Rogers J.A., Hsu J.W.P., Electrical contacts to molecular layers by nanotransfer printing, Nano Lett., 2003, 3, 913-917. CrossrefGoogle Scholar

  • [264] Guerin D., Merckling C., Lenfant S., Wallart X., Pleutin S., Vuillaume D., Silicon-molecules-metal junctions by transfer printing: chemical synthesis and electrical properties, J. Phys. Chem. C., 2007, 111, 7947-7956. Google Scholar

  • [265] Vilan A., Cahen D., Soft contact deposition onto molecularly modified GaAs. Thin metal film flotation: principles and electrical effects, Adv. Funct. Mater., 2002, 12, 795-807. CrossrefGoogle Scholar

  • [266] Haick H., Ambrico M., Ligonzo T., Tung R.T., Cahen D., Controlling semiconductor/metal junction barriers by incomplete, nonideal molecular monolayers, J. Am. Chem. Soc., 2006, 128, 6854-6869. CrossrefGoogle Scholar

  • [267] Haick H., Cahen D., Contacting organic molecules by soft methods: towards molecule-based electronic devices, Acc. Chem. Res., 2008, 41, 359-366. CrossrefGoogle Scholar

  • [268] Vilan A., Ghabboun J., Cahen D., Molecule-metal polarization at rectifying GaAs interfaces, J. Phys. Chem. B, 2003, 107, 6360-6376. CrossrefGoogle Scholar

  • [269] Pookpanratana S., Robertson J.W.F., Jaye C., Fischer D.A., Richter C.A., Hacker C.A., Electrical and physical characterization of bilayer carboxylic acid-functionalized molecular layers, Langmuir, 2013, 29, 2083-2091. CrossrefGoogle Scholar

  • [270] Bonifas A.P., McCreery R.L., ‘Soft’ Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition, Nat. Nanotechnol., 2010, 5, 612-617. CrossrefGoogle Scholar

  • [271] Martin S., Pera G., Ballesteros L.M., Hope A.J., Marqués-González S., Low P.J., et al., Towards the fabrication of the top-contact electrode in molecular junctions by photoreduction of a metal precursor, Chem. Eur. J., 2014, 20, 3421-3426. CrossrefGoogle Scholar

  • [272] Zangmeister C.D., van Zee R.D., Electroless deposition of copper onto 4-mercaptobenzoic acid self-assembled on gold, Langmuir, 2003, 19, 8065-8068. Google Scholar

  • [273] Lu P., Walker A.V., Investigation of the mechanism of electroless deposition of copper on functionalized alkanethiolate self-assembled monolayers adsorbed on gold, Langmuir, 2007, 23, 12577-12582. CrossrefGoogle Scholar

  • [274] Aldakov D., Bonnassieux Y., Geffroy B., Palacin S., Selective electroless copper deposition on self-assembled dithiol monolayers, ACS Appl. Mater. Interfaces, 2009, 1, 584-589. CrossrefGoogle Scholar

  • [275] Lu P., Shi Z., Walker A.V., Selective electroless deposition of copper on organic thin films with improved morphology, Langmuir, 2011, 27, 13022-13028. CrossrefGoogle Scholar

  • [276] Shi Z., Walker A.V., Synthesis of nickel nanowires via electroless nanowire deposition on micropatterned substrates, Langmuir, 2011, 27, 11292-11295. CrossrefGoogle Scholar

  • [277] Wang G., Kim Y., Choe M., Kim T.W., Lee T., A new approach for molecular electronic junctions with a multilayer graphene electrode, Adv. Mater., 2011, 23, 755-760. Google Scholar

  • [278] Li T., Hauptmann J.R., Wei Z., Petersen S., Bovet N., Vosch T., et al., Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions, Adv. Mater. , 2012, 24, 1333-1339. Google Scholar

About the article

Received: 2014-08-11

Accepted: 2014-10-27

Published Online: 2014-12-15


Citation Information: Nanofabrication, Volume 1, Issue 1, ISSN (Online) 2299-680X, DOI: https://doi.org/10.2478/nanofab-2014-0010.

Export Citation

© 2014 Pilar Cea et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Ramneek Kaur, Gurpreet Kaur Bhullar, and K.K. Raina
Journal of Molecular Liquids, 2019, Volume 294, Page 111664
[3]
Rudra N. Samajdar, Chandan Kumar, P. Viswanath, and Aninda J. Bhattacharyya
The Journal of Physical Chemistry B, 2019, Volume 123, Number 35, Page 7492
[4]
Henrry Marcelo Osorio, Santiago Martín, María Carmen López, Santiago Marqués-González, Simon J Higgins, Richard J Nichols, Paul J Low, and Pilar Cea
Beilstein Journal of Nanotechnology, 2015, Volume 6, Page 1145
[5]
E. A. Danilov, V. M. Samoilov, V. S. Dmitrieva, A. V. Nikolaeva, D. V. Ponomareva, and E. I. Timoshchuk
Inorganic Materials: Applied Research, 2018, Volume 9, Number 5, Page 794
[6]
I. Lucia Herrer, Ali K. Ismael, David C. Milán, Andrea Vezzoli, Santiago Martín, Alejandro González-Orive, Iain Grace, Colin Lambert, José L. Serrano, Richard J. Nichols, and Pilar Cea
The Journal of Physical Chemistry Letters, 2018, Page 5364
[7]
Lucía Herrer, Victor Sebastian, Santiago Martín, Alejandro González-Orive, Francesc Pérez-Murano, Paul J. Low, José Luis Serrano, Jesús Santamaría, and Pilar Cea
Nanoscale, 2017
[8]
M. Jalal Uddin, M. Khalid Hossain, Mohammad I. Hossain, Wayesh Qarony, S. Tayyaba, M.N.H. Mia, M.F. Pervez, and S. Hossen
Results in Physics, 2017, Volume 7, Page 2289
[9]
Soraya Sangiao, Santiago Martín, Alejandro González-Orive, César Magén, Paul J. Low, José M. De Teresa, and Pilar Cea
Small, 2017, Volume 13, Number 7, Page 1603207
[10]
Santiago Martín, Luz M. Ballesteros, Alejandro González-Orive, Hugo Oliva, Santiago Marqués-González, Matteo Lorenzoni, Richard J. Nichols, Francesc Pérez-Murano, Paul J. Low, and Pilar Cea
J. Mater. Chem. C, 2016, Volume 4, Number 38, Page 9036

Comments (0)

Please log in or register to comment.
Log in