Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Open Access
See all formats and pricing
More options …

Patterning of Quantum Dots by Dip-Pen and Polymer Pen Nanolithography

Soma Biswas
  • Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
  • Laboratory for Bio- and Nano- Instrumentation (LBNI), Ecole Polytechnique Federale De Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Falko Brinkmann
  • Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Hirtz
  • Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Harald Fuchs
  • Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-06 | DOI: https://doi.org/10.1515/nanofab-2015-0002


We present a direct way of patterning CdSe/ ZnS quantum dots by dip-pen nanolithography and polymer pen lithography. Mixtures of cholesterol and phospholipid 1,2-dioleoyl-sn-glycero-3 phosphocholine serve as biocompatible carrier inks to facilitate the transfer of quantum dots from the tips to the surface during lithography. While dip-pen nanolithography of quantum dots can be used to achieve higher resolution and smaller pattern features (approximately 1 μm), polymer pen lithography is able to address intermediate pattern scales in the low micrometre range. This allows us to combine the advantages of micro contact printing in large area and massive parallel patterning, with the added flexibility in pattern design inherent in the DPN technique.

This article offers supplementary material which is provided at the end of the article.

Keywords : Microarrays; Phospholipids; cholesterol; Nanoparticles; Fluorescence microscopy; Atomic force microscopy


  • [1] Singh M., Haverinen H.M., Dhagat P., Jabbour G.E., Inkjet Printing - Process and Its Applications, Adv. Mater., 2010, 22, 673–685. Web of ScienceCrossrefGoogle Scholar

  • [2] Kumar A., Whitesides G.M., Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching, Appl. Phys. Lett., 1993, 63, 2002-2004. CrossrefGoogle Scholar

  • [3] Piner R.D., Zhu J., Xu F., Hong S.H., Mirkin C.A., “Dip-Pen” Nanolithography, Science, 1999, 283, 661–663. Google Scholar

  • [4] Huo F., Zheng Z., Zheng G., Giam L.R., Zhang H., Mirkin C.A., Polymer Pen Lithography, Science, 2008, 321, 1658–1660. Web of ScienceGoogle Scholar

  • [5] Barbulovic-Nad I., Lucente M., Sun Y., Zhang M., Wheeler A.R., Bussmann M., Bio-Microarray Fabrication Techniques - A Review, Crit. Rev. Biotechnol. 2006, 26, 237–259. CrossrefGoogle Scholar

  • [6] Tan C.P., Cipriany B.R., Lin D.M., Craighead H.G., Nanoscale Resolution, Multicomponent Biomolecular Arrays Generated By Aligned Printing With Parylene Peel-Off, Nano Lett., 2010, 10, 719–725. Web of ScienceCrossrefGoogle Scholar

  • [7] Haab B.B, Methods and applications of antibody microarrays in cancer research, Proteomics, 2003, 3, 2116–2122. CrossrefGoogle Scholar

  • [8] Nafday O.A., Lowry T.W., Lenhert S., Multifunctional Lipid Multilayer Stamping, Small, 2012, 8, 1021–1028. CrossrefWeb of ScienceGoogle Scholar

  • [9] Ginger D.S., Zhang H., Mirkin C.A., The Evolution of Dip-Pen Nanolithography, Angew. Chemie, 2004, 43, 30–45. CrossrefGoogle Scholar

  • [10] Brown K.A., Eichelsdoerfer D.J., Liao X., He S., Mirkin C.A., Material transport in dip-pen nanolithography, Front. Phys., 2014, 9, 385-397. CrossrefWeb of ScienceGoogle Scholar

  • [11] Lenhert S., Sun P., Wang Y., Fuchs H., Mirkin C.A., Massively Parallel Dip-Pen Nanolithography of Heterogeneous Supported Phospholipid Multilayer Patterns, Small, 2007, 3, 71–75. CrossrefWeb of ScienceGoogle Scholar

  • [12] Brinkmann F., Hirtz M., Greiner A.M., Weschenfelder M., Waterkotte B., Bastmeyer M., Fuchs H., Interdigitated Multicolored Bioink Micropatterns by Multiplexed Polymer Pen Lithography, Small, 2013, 9, 3266–3275. CrossrefWeb of ScienceGoogle Scholar

  • [13] Zheng Z., Daniel W.L., Giam L.R., Huo F., Senesi A.J., Zheng G., Mirkin C.A., Multiplexed Protein Arrays Enabled by Polymer Pen Lithography: Addressing the Inking Challenge, Angew. Chemie 2009, 48, 7626–7629. CrossrefWeb of ScienceGoogle Scholar

  • [14] Biswas S., Hirtz M., Fuchs H., Measurement of Mass Transfer during Dip-Pen Nanolithography with Phospholipids, Small, 2011, 7, 2081–2086. CrossrefWeb of ScienceGoogle Scholar

  • [15] Bian S., He J., Schesing K.B., Braunschweig A.B., Polymer Pen Lithography (PPL)-Induced Site-Specific Click Chemistry for the Formation of Functional Glycan Arrays, Small, 2012, 8, 2000–2005. Web of ScienceCrossrefGoogle Scholar

  • [16] Chen H.-Y., Hirtz M., Deng X., Laue T., Fuchs H., Lahann J., Substrate Independent Dip-Pen Nanolithography Based on Reactive Coatings. J. Am. Chem. Soc., 2010, 132, 18023–18025. Web of ScienceGoogle Scholar

  • [17] Long D. A., Unal K., Pratt R. C., Malkoch M., Frommer J., Localized “Click” Chemistry Through Dip-Pen Nanolithography. Adv. Mater., 2007, 19, 4471–4473. Web of ScienceGoogle Scholar

  • [18] Oberhansl S., Hirtz M., Lagunas A., Eritja R., Martinez E., Fuchs H., Samitier J., Facile Modification of Silica Substrates Provides a Platform for Direct-Writing Surface Click Chemistry, Small, 2012, 8, 541–545. Web of ScienceCrossrefGoogle Scholar

  • [19] Paxton W. F., Spruell J. M., Stoddart J. F., Heterogeneous Catalysis of a Copper-Coated Atomic Force Microscopy Tip for Direct-Write Click Chemistry, J. Am. Chem. Soc. 2009, 131, 6692–6694. Google Scholar

  • [20] Zhou X., He S., Brown K. A., Mendez-Arroyo J., Boey F., Mirkin C. A., Locally Altering the Electronic Properties of Graphene by Nanoscopically Doping It with Rhodamine 6G, Nano Lett. 2013, 13, 1616–1621. Google Scholar

  • [21] Lenhert S., Brinkmann F., Laue T., Walheim S., Vannahme C., Klinkhammer S., et al., Lipid multilayer gratings, Nat. Nanotechnol., 2010, 5, 275–279. Web of ScienceCrossrefGoogle Scholar

  • [22] Sekula S., Fuchs J., Weg-Remers S., Nagel P., Schuppler S., Fragala J., et al., Multiplexed Lipid Dip-Pen Nanolithography on Subcellular Scales for the Templating of Functional Proteins and Cell Culture, Small, 2008, 4, 1785-1793. Web of ScienceCrossrefGoogle Scholar

  • [23] Wang W.M., Stoltenberg R.M., Liu S., Bao Z., Direct Patterning of Gold Nanoparticles Using Dip-Pen Nanolithography, ACS Nano, 2008, 2, 2135-2142. CrossrefWeb of ScienceGoogle Scholar

  • [24] Hirtz M., Oikonomou A., Georgiou T., Fuchs H., Vijayaraghavan A., Multiplexed Biomimetic Lipid Membranes on Graphene by Dip-Pen Nanolithography, Nat. Commun., 2013, 4, 2591. Web of ScienceCrossrefGoogle Scholar

  • [25] Hirtz M., Corso R., Sekula-Neuner S., Fuchs H., Comparative Height Measurements of Dip-Pen Nanolithography-Produced Lipid Membrane Stacks with Atomic Force, Fluorescence, and Surface Enhanced Ellipsometric Contrast Microscopy, Langmuir, 2011, 27, 11605-11608. Web of ScienceCrossrefGoogle Scholar

  • [26] Bellido E., de Miguel R., Sesé J., Ruiz-Molina D., Lostao A., Maspoch D., Nanoscale Positioning of Inorganic Nanoparticles Using Biological Ferritin Arrays Fabricated by Dip-Pen Nanolithography, Scanning, 2010, 32, 35-41. Web of ScienceGoogle Scholar

  • [27] Kim J., Shin Y., Yun S., Choi D., Nam J., Kim S. R., et al., Direct-Write Patterning of Bacterial Cells by Dip-Pen Nanolithography, J. Am. Chem. Soc., 2012, 134, 16500–16503. Web of ScienceGoogle Scholar

  • [28] Huang L., Braunschweig A.B., Shim W., Qin L., Lim J.K., Hurst H.J., et al., Matrix-Assisted Dip-Pen Nanolithography and Polymer Pen Lithography, Small, 2010, 6, 1077–1081. Web of ScienceCrossrefGoogle Scholar

  • [29] Senesi A. J., Rozkiewicz D.I., Reinhoudt D.N., Mirkin C.A., Agarose-Assisted Dip-Pen Nanolithography of Oligonucleotides and Proteins, ACS Nano, 2009, 3, 2394–2402. CrossrefWeb of ScienceGoogle Scholar

  • [30] Yoffe A.D., Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems, Adv. Phys., 2001, 50, 1–208. CrossrefGoogle Scholar

  • [31] Bera D., Qian L., Tseng T.-K., Holloway P.H., Quantum Dots and Their Multimodal Applications: A Review, Materials, 2010, 3, 2260–2345. CrossrefGoogle Scholar

  • [32] Pattani V.P., Li C., Desai T.A., Vu T.Q., Microcontact printing of quantum dot bioconjugate arrays for localized capture and detection of biomolecules, Biomed. Microdevices, 2008, 10, 367–374. CrossrefWeb of ScienceGoogle Scholar

  • [33] Ryman-Rasmussen J.P., Riviere J.E., Monteiro-Riviere N.A., Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes, J. Invest. Dermatol., 2007, 127, 143–153. Web of ScienceGoogle Scholar

  • [34] Rizzo A., Mazzeo M., Palumbo M., Lerario G., D’Amone S., Cingolani R., Gigli G., Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers, Adv. Mater., 2008, 20, 1886–1891. Web of ScienceCrossrefGoogle Scholar

  • [35] Anikeeva P.O., Madigan C.F., Halpert J.E., Bawendi M.G., Bulović V., Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots, Phys. Rev. B, 2008, 78, 085434-1-085434-8. Web of ScienceCrossrefGoogle Scholar

  • [36] Haverinen H.M., Myllylä R.A., Jabbour G.E., Inkjet printing of light emitting quantum dots, Appl. Phys. Lett., 2009, 94, 073108-1-073108-3. CrossrefGoogle Scholar

  • [37] Collins J. M., Lam R. T. S., Yang Z., Semsarieh B., Smetana A. B., Nettikadan S., Targeted Delivery to Single Cells in Precisely Controlled Microenvironments, Lab Chip, 2012, 12, 2643–2648. Web of ScienceCrossrefGoogle Scholar

  • [38] Panzer M. J., Aidala K. E., Bulovic V., Contact printing of colloidal nanocrystal thin films for hybrid organic/quantum dot optoelectronic devices, Nano Rev., 2012, 3, 16144. CrossrefGoogle Scholar

  • [39] Anikeeva P. O., Halpert J. E., Bawendi M. G., Bulovic V., Quantum dot light emitting devices with electroluminescence tunable over the entire visible spectrum, Nano Lett., 2009, 9, 2532–2536. CrossrefWeb of ScienceGoogle Scholar

  • [40] Kim T.H., Cho K.S., Lee E.K., Lee S.J., Chae J., Kim J.W., et al., Full-colour quantum dot displays fabricated by transfer printing, Nat. Photonics, 201 1, 5, 176-182. Web of ScienceGoogle Scholar

  • [41] Bog U., Laue T., Grossmann T., Beck T., Wienhold T., Richter B., et al., On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink, Lab Chip, 2013, 13, 2701-2707. CrossrefWeb of ScienceGoogle Scholar

  • [42] Bog U., Brinkmann F., Kalt H., Koos C., Mappes T., Hirtz M., et al., Large-Scale Parallel Surface Functionalization of Goblet-Type Whispering Gallery Mode Microcavity Arrays for Biosensing Applications, Small, 2014, 10, 3863-3868. CrossrefWeb of ScienceGoogle Scholar

  • [43] Sekula-Neuner S., Maier J., Oppong E., Cato A.C.B., Hirtz M., Fuchs H., Allergen Arrays for Antibody Screening and Immune Cell Activation Profiling Generated by Parallel Lipid Dip-Pen Nanolithography, Small, 2012, 8, 585-591. CrossrefWeb of ScienceGoogle Scholar

  • [44] Oppong E., Hedde P.N., Sekula-Neuner S., Yang L., Brinkmann F., Dörlich R. et al., Localization and Dynamics of Glucocorticoid Receptor at the Plasma Membrane of Activated Mast Cells, Small, 2014, 10, 1991-1998. Web of ScienceCrossrefGoogle Scholar

  • [45] Haaheim J., Val V., Bussan J., Rozhok S., Jang J.-W., Fragala J., Nelson M., Self-leveling two-dimensional probe arrays for Dip Pen Nanolithography, Scanning, 2010, 32, 49–59. Web of ScienceGoogle Scholar

About the article

Received: 2014-11-02

Accepted: 2015-02-09

Published Online: 2015-05-06

Citation Information: Nanofabrication, Volume 2, Issue 1, ISSN (Online) 2299-680X, DOI: https://doi.org/10.1515/nanofab-2015-0002.

Export Citation

© 2015 Soma Biswas et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shuyan Lin, Guanjun Tan, Jinhui Yu, Enguo Chen, Yalian Weng, Xiongtu Zhou, Sheng Xu, Yun Ye, Qun Frank Yan, and Tailiang Guo
Optics Express, 2019, Volume 27, Number 20, Page 28480
Mi-Sun Yang, Changhoon Song, Jihoon Choi, Jeong-Sik Jo, Jin-Hyun Choi, Byung Kee Moon, Heeso Noh, and Jae-Won Jang
Nanoscale, 2019
Keith A. Brown, James L. Hedrick, Daniel J. Eichelsdoerfer, and Chad A. Mirkin
ACS Nano, 2018
Sang-ho Shin, Boyeon Hwang, Zhi-Jun Zhao, So Hee Jeon, JooYun Jung, Ji-Hye Lee, Byeong-Kwon Ju, and Jun-Ho Jeong
Scientific Reports, 2018, Volume 8, Number 1
Ravi Kumar, Ainhoa Urtizberea, Souvik Ghosh, Uwe Bog, Quinn Rainer, Steven Lenhert, Harald Fuchs, and Michael Hirtz
Langmuir, 2017
Hohyun Keum, Yiran Jiang, Jun Park, Joseph Flanagan, Moonsub Shim, and Seok Kim
Micromachines, 2017, Volume 8, Number 1, Page 18
Ravi Kumar, Alice Bonicelli, Sylwia Sekula-Neuner, Andrew C. B. Cato, Michael Hirtz, and Harald Fuchs
Small, 2016, Volume 12, Number 38, Page 5330

Comments (0)

Please log in or register to comment.
Log in