Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanofabrication

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-680X
See all formats and pricing
More options …

Lipid nanotube networks: Biomimetic Cell-to-Cell Communication and Soft-Matter Technology

Irep Gözen
  • Biophysical Technology Laboratory, Department of Chemistry; Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aldo Jesorka
  • School of Engineering and Applied Sciences, Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-08 | DOI: https://doi.org/10.1515/nanofab-2015-0003

References

  • [1] Abounit S., Zurzolo C., Wiring through tunneling nanotubes - from electrical signals to organelle transfer, J. Cell Sci., 2012 , 125, 1089-1098. CrossrefWeb of ScienceGoogle Scholar

  • [2] Kumar N.M., Gilula N.B., The gap junction communication channel, Cell, 1996, 84, 381-388. Google Scholar

  • [3] Fevrier B., Raposo G., Exosomes: endosomal-derived vesicles shipping extracellular messages, Curr. Opin. Cell Biol., 2004, 16, 415-421. CrossrefGoogle Scholar

  • [4] Kimura S., Hase K., Ohno H., The molecular basis of induction and formation of tunneling nanotubes, Cell Tissue Res., 2013, 352, 67-76. Web of ScienceGoogle Scholar

  • [5] Davis D.M., Sowinski S., Membrane nanotubes: dynamic long-distance connections between animal cells, Nat. Rev. Mol. Cell Biol., 2008, 9, 431-436. Web of ScienceCrossrefGoogle Scholar

  • [6] Marzo L., Gousset K., Zurzolo C., Multifaceted roles of tunneling nanotubes in intercellular communication, Front. Physiol., 2012, 3, 72. Web of ScienceCrossrefGoogle Scholar

  • [7] Hurtig J., Chiu D.T., Onfelt B., Intercellular nanotubes: insights from imaging studies and beyond, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2, 260-276. CrossrefWeb of ScienceGoogle Scholar

  • [8] Rustom A., Saffrich R., Markovic I., Walther P., Gerdes H.H., Nanotubular highways for intercellular organelle transport, Science, 2004, 303, 1007-1010. Google Scholar

  • [9] Pascoal P., Kosanic D., Gjoni M., Vogel H., Membrane nanotubes drawn by optical tweezers transmit electrical signals between mammalian cells over long distances, Lab Chip, 2010, 10, 2235-2241. Web of ScienceCrossrefGoogle Scholar

  • [10] Lachambre S., Chopard C., Beaumelle B., Preliminary characterisation of nanotubes connecting T-cells and their use by HIV-1, Biol. Cell, 2014, 106, 394-404. Web of ScienceGoogle Scholar

  • [11] Takahashi A., Kukita A., Li Y.J., Zhang J.Q., Nomiyama H., Yamaza T., et al., Tunneling nanotube formation is essential for the regulation of osteoclastogenesis, J. Cell. Biochem., 2013, 114, 1238-1247. Web of ScienceGoogle Scholar

  • [12] Thayanithy V., Babatunde V., Dickson E.L., Wong P., Oh S., Ke X., et al., Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells, Exp. Cell Res., 2014, 323, 178-188. Web of ScienceGoogle Scholar

  • [13] Pasquier J., Guerrouahen B.S., Al Thawadi H., Ghiabi P., Maleki M., Abu-Kaoud N., et al., Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance, J. Transl. Med., 2013, 11, 94. Web of ScienceCrossrefGoogle Scholar

  • [14] Costanzo M., Abounit S., Marzo L., Danckaert A., Chamoun Z., Roux P., et al., Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes, J. Cell Sci., 2013, 126, 3678-3685. Web of ScienceCrossrefGoogle Scholar

  • [15] Rupp I., Sologub L., Williamson K.C., Scheuermayer M., Reininger L., Doerig C., et al., Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut, Cell Res., 2011, 21, 683-696. Web of ScienceCrossrefGoogle Scholar

  • [16] Agnati L., Guidolin D., Maura G., Marcoli M., Leo G., Carone C., et al., Information handling by the brain: proposal of a new “paradigm” involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission, J. Neural Transm., 2014, 121, 1431-1449. Web of ScienceGoogle Scholar

  • [17] Agnati L.F., Fuxe K., Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks, Phil. Trans. R. Soc. B, 2014, 369, 20130505. Google Scholar

  • [18] Gozen I., Jesorka A., Instrumental Methods to Characterize Molecular Phospholipid Films on Solid Supports, Anal. Chem., 2012, 84, 822-838. Web of ScienceGoogle Scholar

  • [19] Karlsson M., Davidson M., Karlsson R., Karlsson A., Bergenholtz J., Konkoli Z., et al., Biomimetic nanoscale reactors and networks, Annu. Rev. Phys. Chem., 2004, 55, 613-649. Google Scholar

  • [20] Jesorka A., Stepanyants N., Zhang H.J., Ortmen B., Hakonen B., Orwar O., Generation of phospholipid vesicle-nanotube networks and transport of molecules therein, Nat. Protoc., 2011, 6, 791-805. CrossrefWeb of ScienceGoogle Scholar

  • [21] Lizana L., Bauer B., Orwar O., Controlling the rates of biochemical reactions and signaling networks by shape and volume changes, Proc. Natl. Acad. Sci. USA, 2008, 105, 4099-4104. Google Scholar

  • [22] Gozen I., Billerit C., Dommersnes P., Jesorka A., Orwar O., Calcium Ion Controlled Nanoparticle Induced Tubulation in Supported Flat Phospholipid Vesicles, Biophys. J., 2012, 102, 94a. CrossrefGoogle Scholar

  • [23] Castillo J.A., Narciso D.M., Hayes M.A., Bionanotubule Formation from Surface-Attached Liposomes Using Electric Fields, Langmuir, 2009, 25, 391-396. CrossrefWeb of ScienceGoogle Scholar

  • [24] Frusawa H., Manabe T., Kagiyama E., Hirano K., Kameta N., Masuda M., et al., Electric moulding of dispersed lipid nanotubes into a nanofluidic device, Sci. Rep., 2013, 3, 2165. Web of ScienceCrossrefGoogle Scholar

  • [25] Sugihara K., Chami M., Derenyi I., Voros J., Zambelli T., Directed Self-Assembly of Lipid Nanotubes from Inverted Hexagonal Structures, ACS Nano, 2012, 6, 6626-6632. Web of ScienceCrossrefGoogle Scholar

  • [26] Karlsson M., Sott K., Cans A.S., Karlsson A., Karlsson R., Orwar O., Micropipet-assisted formation of microscopic networks of unilamellar lipid bilayer nanotubes and containers, Langmuir, 2001, 17, 6754-6758. CrossrefGoogle Scholar

  • [27] Zhang H., Xu S., Jeffries G.D.M., Orwar O., Jesorka A., Artificial nanotube connections and transport of molecular cargo between mammalian cells, Nano Commun. Netw., 2013, 4, 197-204. CrossrefGoogle Scholar

  • [28] Davidson M., Karlsson M., Sinclair J., Sott K., Orwar O., Nanotube-vesicle networks with functionalized membranes and interiors, J. Am. Chem. Soc., 2003, 125, 374-378. Google Scholar

  • [29] Bauer B., Davidson M., Orwar O., Direct reconstitution of plasma membrane lipids and proteins in nanotube-vesicle networks, Langmuir, 2006, 22, 9329-9332. CrossrefGoogle Scholar

  • [30] Kameta N., Minamikawa H., Masuda M., Supramolecular organic nanotubes: how to utilize the inner nanospace and the outer space, Soft Matter, 2011, 7, 4539-4561. Web of ScienceCrossrefGoogle Scholar

  • [31] Sugihara K., Rustom A., Spatz J.P., Freely drawn single lipid nanotube patterns, Soft Matter, 2015, 11, 2029-2035. Web of ScienceCrossrefGoogle Scholar

  • [32] Wegrzyn I., Jeffries G.D.M., Nagel B., Katterle M., Gerrard S.R., Brown T., et al., Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles, J. Am. Chem. Soc., 2011, 133, 18046-18049. Web of ScienceGoogle Scholar

  • [33] Markstrom M., Lizana L., Orwar O., Jesorka A., Thermoactuated diffusion control in soft matter nanofluidic devices, Langmuir, 2008, 24, 5166-5171. Web of ScienceCrossrefGoogle Scholar

  • [34] Czolkos I., Guan J., Orwar O., Jesorka A., Flow control of thermotropic lipid monolayers, Soft Matter, 2011, 7, 6926-6933. CrossrefWeb of ScienceGoogle Scholar

  • [35] Gozen I., Shaali M., Ainla A., Ortmen B., Poldsalu I, Kustanovich K., et al., Thermal migration of molecular lipid films as a contactless fabrication strategy for lipid nanotube networks, Lab Chip, 2013, 13, 3822-3826. Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-02-21

Accepted: 2015-03-19

Published Online: 2015-05-08


Citation Information: Nanofabrication, ISSN (Online) 2299-680X, DOI: https://doi.org/10.1515/nanofab-2015-0003.

Export Citation

© 2015 Irep Gözen, Aldo Jesorka. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in