Jump to ContentJump to Main Navigation
Show Summary Details
More options …


1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Evaporative edge lithography of a liposomal drug microarray for cell migration assays

Nicholas Vafai
  • Department of Biological Sciences, Florida State University, Tallahassee, FL, 32306- 4370, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Troy W. Lowry / Korey A. Wilson
  • Department of Biological Sciences, Florida State University, Tallahassee, FL, 32306- 4370, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael W. Davidson
  • National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Florida State University, Tallahassee, FL 32310- 3706, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Steven Lenhert
  • Department of Biological Sciences, Florida State University, Tallahassee, FL, 32306- 4370, USA
  • Integrative NanoScience Institute, Florida State University, Tallahassee, FL, 32306, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-24 | DOI: https://doi.org/10.1515/nanofab-2015-0004


Lipid multilayer microarrays are a promising approach to miniaturize laboratory procedures by taking advantage of the microscopic compartmentalization capabilities of lipids. Here, we demonstrate a new method to pattern lipid multilayers on surfaces based on solvent evaporation along the edge where a stencil contacts a surface called evaporative edge lithography (EEL). As an example of an application of this process, we use EEL to make microarrays suitable for a cell-based migration assay. Currently existing cell migration assays require a separate compartment for each drug which is dissolved at a single concentration in solution. An advantage of the lipid multilayer microarray assay is that multiple compounds can be tested on the same surface. We demonstrate this by testing the effect of two different lipophilic drugs, Taxol and Brefeldin A, on collective cell migration into an unpopulated area. This particular assay should be scalable to test of 2000 different lipophilic compounds or dosages on a standard microtiter plate area, or if adapted for individual cell migration, it would allow for high-throughput screening of more than 50,000 compounds per plate.

This article offers supplementary material which is provided at the end of the article.

Keywords: lithography; stencil; lipid; microarray; cell migration; high-throughput screening


  • [1] Lenhert S., Brinkmann F., Laue T., Walheim S., Vannahme C., Klinkhammer S. , et al., Lipid multilayer gratings, Nat. Nanotechnol., 2010, 5, 275-279. CrossrefGoogle Scholar

  • [2] Lenhert S., Sun P., Wang Y.H., Fuchs H., Mirkin C.A., Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns, Small, 2007, 3, 71-75. CrossrefGoogle Scholar

  • [3] Sekula S., Fuchs J., Weg-Remers S., Nagel P., Schuppler S., Fragala J., et al., Multiplexed Lipid Dip-Pen Nanolithography on Subcellular Scales for the Templating of Functional Proteins and Cell Culture, Small, 2008, 4, 1785-1793. CrossrefGoogle Scholar

  • [4] Lowry T.W., Kusi-Appiah A., Guan J., Van Winkle D.H., Davidson M.W., Lenhert S., Materials Integration by Nanointaglio, Adv. Mater. Int., 2014, 1, 1-5. CrossrefGoogle Scholar

  • [5] Majd S., Mayer M., Generating Arrays with High Content and Minimal Consumption of Functional Membrane Proteins, J. Am. Chem. Soc., 2008, 130, 16060-16064. Google Scholar

  • [6] Nafday O.A., Lowry T.W., Lenhert S., Multifunctional Lipid Multilayer Stamping, Small 2012, 8, 1021-1028. CrossrefGoogle Scholar

  • [7] Mathieu M., Schunk D., Franzka S., Mayer C., Hartmann N., Temporal stability of photothermally fabricated micropatterns in supported phospholipid multilayers, J. Vac. Sci. Technol. A, 2010, 28, 953-957. CrossrefGoogle Scholar

  • [8] Diguet A., Le Berre M., Chen Y., Baigl D., Preparation of Phospholipid Multilayer Patterns of Controlled Size and Thickness by Capillary Assembly on a Microstructured Substrate, Small, 2009, 5, 1661-1666. CrossrefGoogle Scholar

  • [9] Brinker C. J., Lu Y. F., Sellinger A., Fan H. Y., Evaporationinduced self-assembly: Nanostructures made easy, Adv. Mater., 1999, 11, 579-585. CrossrefGoogle Scholar

  • [10] Yuan B., Xing L.L., Zhang Y.D., Lu Y., Mai Z. H., Li M., Self-assembly of highly oriented lamellar nanoparticlephospholipid nanocomposites on solid surfaces, J. Am. Chem. Soc., 2007, 129, 11332-11333. Google Scholar

  • [11] Cai Y.J., Zhao Z., Chen J.X., Yang T.L., Cremer P.S., Deflected Capillary Force Lithography, ACS Nano, 2012, 6, 1548-1556. CrossrefGoogle Scholar

  • [12] Jeong H.E., Kwak R., Khademhosseini A., Suh K.Y., UV-assisted capillary force lithography for engineering biomimetic multiscale hierarchical structures: From lotus leaf to gecko foot hairs, Nanoscale, 2009, 1, 331-338. CrossrefGoogle Scholar

  • [13] Suh K.Y., Kim Y.S., Lee H.H., Capillary force lithography, Adv. Mater., 2001, 13, 1386-1389. CrossrefGoogle Scholar

  • [14] Anrather D., Smetazko M., Saba M., Alguel Y., Schalkhammer T., Supported membrane nanodevices, J. Nanosci. Nanotechnol., 2004, 4, 1-2. Google Scholar

  • [15] Kusi-Appiah A.E., Vafai N., Cranfill P.J., Davidson M.W., Lenhert S., Lipid multilayer microarrays for in vitro liposomal drug delivery and screening, Biomaterials, 2012, 33, 4187-4194. CrossrefGoogle Scholar

  • [16] Majd S., Mayer M., Hydrogel stamping of arrays of supported lipid bilayers with various lipid compositions for the screening of drug–membrane and protein–membrane interactions, Angew. Chem., 2005, 117, 6855-6858. CrossrefGoogle Scholar

  • [17] Diaz-Mochon J.J., Tourniaire G., Bradley M., Microarray platforms for enzymatic and cell-based assays, Chem. Soc. Rev., 2007, 36, 449-457. CrossrefGoogle Scholar

  • [18] Bailey S.N., Sabatini D.M., Stockwell B.R., Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 16144-16149. CrossrefGoogle Scholar

  • [19] Tourniaire G., Collins J., Campbell S., Mizomoto H., Ogawa S., Thaburet J.F., et al., Polymer microarrays for cellular adhesion, Chem. Comm., 2006, 2118-2120. CrossrefGoogle Scholar

  • [20] Balakin K.V., Savchuk N.P., Tetko I.V., In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: Trends, problems and solutions, Curr. Med. Chem., 2006, 13, 223-241. CrossrefGoogle Scholar

  • [21] Brabletz T., Jung A., Spaderna S., Hlubek F., Kirchner T., Opinion - Migrating cancer stem cells - an integrated concept of malignant tumour progression, Nat. Rev. Cancer 2005, 5, 744-749. CrossrefGoogle Scholar

  • [22] Sampieri K., Fodde R., Cancer stem cells and metastasis, Semin. Cancer Biol., 2012, 22, 187-193. CrossrefGoogle Scholar

  • [23] Eilken H.M., Adams R.H., Dynamics of endothelial cell behavior in sprouting angiogenesis, Curr. Opin. Cell Biol., 2010, 22, 617-625. CrossrefGoogle Scholar

  • [24] Griffioen A.W., Molema G., Angiogenesis: Potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation, Pharmacol. Rev., 2000, 52, 237-268. Google Scholar

  • [25] Witte M.B., Barbul A., General principles of wound healing, Surg. Clin. North Am., 1997, 77, 509-528. CrossrefGoogle Scholar

  • [26] Aman A., Piotrowski T., Cell migration during morphogenesis, Dev. Biol., 2010, 341, 20-33. Google Scholar

  • [27] Weijer C.J., Collective cell migration in development, J. Cell Sci., 2009, 122, 3215-3223. CrossrefGoogle Scholar

  • [28] Liang C.C., Park A.Y., Guan J.L., In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro, Nat. Protoc., 2007, 2, 329-333. CrossrefGoogle Scholar

  • [29] Valster A., Tran N.L., Nakada M., Berens M.E., Chan A.Y., Symons M., Cell migration and invasion assays, Methods, 2005, 37, 208-215. CrossrefGoogle Scholar

  • [30] van Horssen R., ten Hagen T.L.M., Crossing Barriers: The New Dimension of 2D Cell Migration Assays, J. Cell. Physiol., 2011, 226, 288-290. Google Scholar

  • [31] Yarrow J.C., Totsukawa G., Charras G.T., Mitchison T.J., Screening for cell migration inhibitors via automated microscopy reveals a rho-kinase inhibitor, Chem. Biol., 2005, 12, 385-395. CrossrefGoogle Scholar

  • [32] Lenhert S., Meier M.B., Meyer U., Chi L.F., Wiesmann H.P., Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography, Biomaterials, 2005, 26, 563-570. CrossrefGoogle Scholar

  • [33] Poujade M., Grasland-Mongrain E., Hertzog A., Jouanneau J., Chavrier P., Ladoux B., et al., Collective migration of an epithelial monolayer in response to a model wound, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 15988-15993. CrossrefGoogle Scholar

  • [34] Shin K.D., Lee M.Y., Shin D.S., Lee S., Son K.H., Koh S., et al., Blocking tumor cell migration and invasion with biphenyl isoxazole derivative KRIBB3, a synthetic molecule that inhibits Hsp27 phosphorylation. J. Biol. Chem.. 2005, 280, 41439-41448. Google Scholar

  • [35] Attoub S., Hassan A.H., Vanhoecke B., Iratni R., Takahashi T., Gaben A.-M., et al., Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells, Eur. J. Pharmacol., 2011, 651, 18-25. Google Scholar

  • [36] Gough W., Hulkower K.I., Lynch R., McGlynn P., Uhlik M., Yan L., Lee J.A., A Quantitative, Facile, and High-Throughput Image-Based Cell Migration Method Is a Robust Alternative to the Scratch Assay, J. Biomol. Screen., 2011, 16, 155-163. CrossrefGoogle Scholar

  • [37] Tavana H., Kaylan K., Bersano-Begey T., Luker K.E., Luker G.D., Takayama S., Rehydration of Polymeric, Aqueous, Biphasic System Facilitates High Throughput Cell Exclusion Patterning for Cell Migration Studies, Adv. Funct. Mater., 2011, 21, 2920-2926. CrossrefGoogle Scholar

  • [38] Chung S., Sudo R., Mack P.J., Wan C.R., Vickerman V., Kamm R.D., Cell migration into scaffolds under co-culture conditions in a microfluidic platform, Lab Chip, 2009, 9, 269-275. CrossrefGoogle Scholar

  • [39] Conant C.G., Nevill J.T., Schwartz M., Ionescu-Zanetti C., Wound Healing Assays in Well Plate-Coupled Microfluidic Devices with Controlled Parallel Flow, J. Lab. Autom., 2010, 15, 52-57. Google Scholar

  • [40] Huang X.W., Li L., Tu Q., Wang J.C., Liu W.M., Wang X.Q., et al., On-chip cell migration assay for quantifying the effect of ethanol on MCF-7 human breast cancer cells, Microfluid. Nanofluid., 2011, 10, 1333-1341. CrossrefGoogle Scholar

  • [41] Kim B.J., Wu M.M., Microfluidics for Mammalian Cell Chemotaxis, Ann. Biomed. Eng. 2012, 40, 1316-1327. CrossrefGoogle Scholar

  • [42] Liu T.J., Lin B.C., Qin J.H., Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device, Lab Chip, 2010, 10, 1671-1677. CrossrefGoogle Scholar

  • [43] Wang L., Zhu J., Deng C., Xing W.L., Cheng J., An automatic and quantitative on-chip cell migration assay using self-assembled monolayers combined with real-time cellular impedance sensing, Lab Chip, 2008, 8, 872-878. CrossrefGoogle Scholar

  • [44] Wang Z., Kim M.-C., Marquez M., Thorsen T., High-density microfluidic arrays for cell cytotoxicity analysis, Lab Chip, 2007, 7, 740-745. CrossrefGoogle Scholar

  • [45] Onuki-Nagasaki R., Nagasaki A., Hakamada K., Uyeda T.Q.P., Fujita S., Miyake M., Miyake J., On-chip screening method for cell migration genes based on a transfection microarray, Lab Chip, 2008, 8, 1502-1506. CrossrefGoogle Scholar

  • [46] Timm D.M., Chen J., Sing D., Gage J.A., Haisler W.L., Neeley S.K., et al., A high-throughput three-dimensional cell migration assay for toxicity screening with mobile device-based macroscopic image analysis, Sci. Rep., 2013, 3, 1-8. Google Scholar

  • [47] Nafday O.A., Lenhert S., High-throughput optical quality control of lipid multilayers fabricated by dip-pen nanolithography, Nanotechnology, 2011, 22, 1-7. Google Scholar

  • [48] Groves J.T., Mahal L.K., Bertozzi C.R., Control of cell adhesion and growth with micropatterned supported lipid membranes, Langmuir, 2001, 17, 5129-5133. CrossrefGoogle Scholar

  • [49] Tang F., Hughes J.A., Synthesis of a single-tailed cationic lipid and investigation of its transfection, J. Control. Release, 1999, 62, 345-358. CrossrefGoogle Scholar

  • [50] Fayad W., Rickardson L., Haglund C., Olofsson M.H., D’Arcy P., Larsson R., et al., Identification of Agents that Induce Apoptosis of Multicellular Tumour Spheroids: Enrichment for Mitotic Inhibitors with Hydrophobic Properties, Chem. Biol. Drug Des., 2011, 78, 547-557. CrossrefGoogle Scholar

  • [51] Zhu J.-W., Nagasawa H., Nagura F., Mohamad S.B., Uto Y., Ohkura K., Hori H., Elucidation of strict structural requirements of Brefeldin A as an inducer of differentiation and apoptosis, Bioorg. Med. Chem., 2000, 8, 455-463. CrossrefGoogle Scholar

About the article

Received: 2015-05-22

Accepted: 2015-06-26

Published Online: 2015-07-24

Citation Information: Nanofabrication, ISSN (Online) 2299-680X, DOI: https://doi.org/10.1515/nanofab-2015-0004.

Export Citation

© 2015 Nicholas Vafai et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Nathalie Willems, Ainhoa Urtizberea, Andrea F. Verre, Maria Iliut, Mickael Lelimousin, Michael Hirtz, Aravind Vijayaraghavan, and Mark S. P. Sansom
ACS Nano, 2017, Volume 11, Number 2, Page 1613
Lida Ghazanfari and Steven Lenhert
Frontiers in Materials, 2016, Volume 3
Troy Lowry, Plengchart Prommapan, Quinn Rainer, David van Winkle, and Steven Lenhert
Sensors, 2015, Volume 15, Number 8, Page 20863

Comments (0)

Please log in or register to comment.
Log in