Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanofabrication

1 Issue per year

Open Access
Online
ISSN
2299-680X
See all formats and pricing
More options …

Ink transport modelling in Dip-Pen Nanolithography and Polymer Pen Lithography

Ainhoa Urtizberea
  • Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Hirtz
  • Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Harald Fuchs
  • Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • Physical Institute and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-05 | DOI: https://doi.org/10.1515/nanofab-2015-0005

Abstract

Dip-pen nanolithography (DPN) and Polymer pen lithography (PPL) are powerful lithography techniques being able to pattern a wide range of inks. Transport and surface spreading depend on the ink physicochemical properties, defining its diffusive and fluid character. Structure assembly on surface arises from a balance between the entanglement of the ink itself and the interaction with the substrate. According to the transport characteristics, different models have been proposed. In this article we review the common types of inks employed for patterning, the particular physicochemical characteristics that make them flow following different dynamics as well as the corresponding transport mechanisms and models that describe them.

Keywords: Dip-pen nanolithography; DPN; Polymer Pen Nanolithography; PPL; ink transport

References

  • Google Scholar

  • [1] Binnig G., Quate C. F., Atomic Force Microscope, Phys. Rev. Lett., 1986, 56, 930–933. CrossrefGoogle Scholar

  • Google Scholar

  • [2] Jaschke M., Butt H.-J., Deposition of Organic Material by the Tip of a Scanning Force Microscope, Langmuir, 1995, 11, 1061–1064. CrossrefGoogle Scholar

  • [3] Piner R. D., Zhu J., Xu F., Hong S., Mirkin C. A., ‘Dip-Pen’ Nanolithography, Science, 1999, 283, 661–663. CrossrefGoogle Scholar

  • [4] Brown K., Eichelsdoerfer D., Liao X., He S., Mirkin C., Material transport in dip-pen nanolithography, Front. Phys., 2013, 9, 385–397. CrossrefGoogle Scholar

  • [5] Urtizberea A., Hirtz M., A diffusive ink transport model for lipid dip-pen nanolithography, Nanoscale, 2015, 7, 15618–15634. CrossrefGoogle Scholar

  • [6] Wang Y., Giam L. R., Park M., Lenhert S., Fuchs H., Mirkin C. A., A Self-Correcting Inking Strategy for Cantilever Arrays Addressed by an Inkjet Printer and Used for Dip-Pen Nanolithography, Small, 2008, 4, 1666–1670. CrossrefGoogle Scholar

  • [7] Jang J. W., Smetana A., Stiles P., Multi-ink pattern generation by dip-pen nanolithography, Scanning, 2010, 32, 24–29. Google Scholar

  • [8] Weeks B. L., Noy A., Miller A. E., De Yoreo J. J., Effect of dissolution kinetics on feature size in dip-pen nanolithography., Phys. Rev. Lett., 2002, 88, 255505. CrossrefGoogle Scholar

  • [9] Sheehan P. E., Whitman L. J., Thiol diffusion and the role of humidity in ‘Dip Pen Nanolithography’., Phys. Rev. Lett., 2002, 88, 156104. CrossrefGoogle Scholar

  • [10] Jang J., Schatz G. C., Ratner M. A., Liquid meniscus condensation in dip-pen nanolithography, J. Chem. Phys., 2002, 116, 3875–3886. Google Scholar

  • [11] Cho N., Ryu S., Kim B., Schatz G. C., Hong S., Phase of molecular ink in nanoscale direct deposition processes, J. Chem. Phys., 2006, 124, 024714. Google Scholar

  • [12] Rozhok S., Piner R., Mirkin C. A., Dip-Pen Nanolithography: What Controls Ink Transport?, J. Phys. Chem. B, 2003, 107, 751–757. CrossrefGoogle Scholar

  • [13] Chung S., Felts J. R., Wang D., King W. P., De Yoreo J. J., Temperature-dependence of ink transport during thermal dip-pen nanolithography, Appl. Phys. Lett., 2011, 99, 129–132. CrossrefGoogle Scholar

  • [14] Sanedrin R. G., Amro N. A., Rendlen J., Nelson M., Temperature controlled dip-pen nanolithography, Nanotechnology, 2010, 21, 115302. CrossrefGoogle Scholar

  • [15] Sheehan P. E., Whitman L. J., King W. P., Nelson B. A., Nanoscale deposition of solid inks via thermal dip pen nanolithography, Appl. Phys. Lett., 2004, 85, 1589–1591. CrossrefGoogle Scholar

  • [16] Jang J., Hong S., Schatz G. C., Ratner M. A., Self-assembly of ink molecules in dip-pen nanolithography: A diffusion model, J. Chem. Phys., 2001, 115, 2721. Google Scholar

  • [17] Eichelsdoerfer D. J., Brown K. A., Mirkin C. A., Capillary bridge rupture in dip-pen nanolithography, Soft Matter, 2014, 10, 5603–5608. Google Scholar

  • [18] Hirtz M., Corso R., Sekula-Neuner S., Fuchs H., Comparative height measurements of dip-pen nanolithography-produced lipid membrane stacks with atomic force, fluorescence, and surface-enhanced ellipsometric contrast microscopy, Langmuir, 2011, 27, 11605–11608. CrossrefGoogle Scholar

  • [19] Huo F., Zheng Z., Zheng G., Giam L. R., Zhang H., Mirkin C. A., Polymer Pen Lithography, Science, 2008, 321, 1658–1660. CrossrefGoogle Scholar

  • [20] Hong J. M., Ozkeskin F. M., Zou J., A micromachined elastomeric tip array for contact printing with variable dot size and density, J. Micromechanics Microengineering, 2008, 18, 015003. Google Scholar

  • [21] Liao X., Braunschweig A. B., Zheng Z., Mirkin C. A., Force- and time-dependent feature size and shape control in molecular printing via polymer-pen lithography., Small, 2010, 6, 1082–1086. CrossrefGoogle Scholar

  • [22] Brinkmann F., Hirtz M., Greiner A. M., Weschenfelder M., Waterkotte B., Bastmeyer M., Fuchs H., Interdigitated Multicolored Bioink Micropatterns by Multiplexed Polymer Pen Lithography, Small, 2013, 9, 3266–3275. CrossrefGoogle Scholar

  • [23] Saha S. K., Culpepper M. L., An Ink Transport Model for Prediction of Feature Size in Dip Pen Nanolithography, J. Phys. Chem. C, 2010, 114, 15364–15369. CrossrefGoogle Scholar

  • [24] Saha S. K. , Culpepper M. L., A surface diffusion model for Dip Pen Nanolithography line writing, Appl. Phys. Lett., 2010, 96, 243105. CrossrefGoogle Scholar

  • [25] Nocedal I., Espinosa H., Kim K.-H., Ink Diffusion in Dip-Pen Nanolithography: A Study in the Development of Nano Fountain Probes, 2005, 2, 105. Google Scholar

  • [26] Giam L. R., Wang Y., Mirkin C. A., Nanoscale molecular transport: The case of dip-pen nanolithography, J. Phys. Chem. A, 2009, 113, 3779–3782. CrossrefGoogle Scholar

  • [27] Piner R. D., Mirkin C. A., Effect of Water on Lateral Force Microscopy in Air, Langmuir, 1997, 13, 6864–6868. CrossrefGoogle Scholar

  • [28] Schenk M., Fu M., Direct visualization of the dynamic behavior of a water meniscus by scanning electron microscopy, J. Appl. Phys., 1998, 84, 4880–4884. CrossrefGoogle Scholar

  • [29] Weeks B. L., Vaughn M. W., Deyoreo J. J., Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy, Langmuir, 2005, 21, 8096–8098. CrossrefGoogle Scholar

  • [30] Stifter T., Marti O., Bhushan B., Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy, Phys. Rev. B, 2000, 62, 13667–13673. CrossrefGoogle Scholar

  • [31] Kim H., Smit B., Jang J., Monte carlo study on the water meniscus condensation and capillary force in atomic force microscopy, J. Phys. Chem. C, 2012, 116, 21923–21931. CrossrefGoogle Scholar

  • [32] Xiao X., Qian L., Investigation of humidity-dependent capillary force, Langmuir, 2000, 16, 8153–8158. CrossrefGoogle Scholar

  • [33] Sirghi L., Szoszkiewicz R., Riedo E., Volume of a nanoscale water bridge, Langmuir, 2006, 22, 1093–1098. CrossrefGoogle Scholar

  • [34] Sedin D. L., Rowlen K. L., Adhesion forces measured by atomic force microscopy in humid air, Anal. Chem., 2000, 72, 2183–2189. CrossrefGoogle Scholar

  • [35] He M., Szuchmacher Blum A., Aston D. E., Buenviaje C., Overney R. M., Luginbühl R., Critical phenomena of water bridges in nanoasperity contacts, J. Chem. Phys., 2001, 114, 1355–1360. Google Scholar

  • [36] Colak A., Wormeester H., Zandvliet H. J. W., Poelsema B., Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip, Appl. Surf. Sci., 2012, 258, 6938–6942. CrossrefGoogle Scholar

  • [37] Peterson E. J., Weeks B. L., De Yoreo J. J. , Schwartz P. V., Effect of environmental conditions on dip pen nanolithography of mercaptohexadecanoic acid, J. Phys. Chem. B, 2004, 108, 15206–15210. CrossrefGoogle Scholar

  • [38] Schwartz P. V., Molecular transport from an atomic force microscope tip: A comparative study of dip-pen nanolithography, Langmuir, 2002, 18, 4041–4046. CrossrefGoogle Scholar

  • [39] Weeks B. L., DeYoreo J. J., Dynamic meniscus growth at a scanning probe tip in contact with a gold substrate, J. Phys. Chem. B, 2006, 110, 10231–10233. CrossrefGoogle Scholar

  • [40] Nafday O. A., Vaughn M. W., Weeks B. L., Evidence of meniscus interface transport in dip-pen nanolithography: An annular diffusion model, J. Chem. Phys., 2006, 125, 144703. Google Scholar

  • [41] Antoncik E., Dip-pen nanolithography: A simple diffusion model, Surf. Sci., 2005, 599, L369–L371. Google Scholar

  • [42] Haaheim J., Eby R., Nelson M., Fragala J., Rosner B., Zhang H., Athas G., Dip Pen Nanolithography (DPN): Process and instrument performance with NanoInk’s NSCRIPTOR system, Ultramicroscopy, 2005, 103, 117–132. CrossrefGoogle Scholar

  • [43] Xu S., Liu G., Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly, Langmuir, 1997, 13, 127–129. CrossrefGoogle Scholar

  • [44] Barczewski M., Walheim S., Heiler T., Blaszczyk A., Mayor M., Schimmel T., High aspect ratio constructive nanolithography with a photo-dimerizable molecule., Langmuir, 2010, 26, 3623–3628. CrossrefGoogle Scholar

  • [45] Chen C., Zhou X., Xie Z., Gao T., Zheng Z., Construction of 3D Polymer Brushes by Dip-Pen Nanodisplacement Lithography: Understanding the Molecular Displacement for Ultrafine and High-Speed Patterning, Small, 2015, 11, 613–621. CrossrefGoogle Scholar

  • [46] Lee N. K., Hong S., Modeling collective behavior of molecules in nanoscale direct deposition processes, J. Chem. Phys., 2006, 124, 114711. Google Scholar

  • [47] Heo D. M., Yang M., Kim H., Saha L. C., Jang J., Tip Dependence of the Self-Assembly in Dip-Pen Nanolithography, J. Phys. Chem. C, 2009, 113, 13813–13818. CrossrefGoogle Scholar

  • [48] Manandhar P., Jang J., Schatz G. C., Ratner M. A., Hong S., Anomalous surface diffusion in nanoscale direct deposition processes, Phys. Rev. Lett., 2003, 90, 115505. CrossrefGoogle Scholar

  • [49] O’Connell C. D., Higgins M. J., Marusic D., Moulton S. E., Wallace G. G., Liquid ink deposition from an atomic force microscope tip: deposition monitoring and control of feature size, Langmuir, 2014, 30, 2712–2721. CrossrefGoogle Scholar

  • [50] Felts J. R., Somnath S., Ewoldt R. H., King W. P., Nanometerscale flow of molten polyethylene from a heated atomic force microscope tip, Nanotechnology, 2012, 23, 215301. CrossrefGoogle Scholar

  • [51] O’Connell C. D., Higgins M. J., Sullivan R. P., Moulton S. E., Wallace G. G., Ink-on-Probe Hydrodynamics in Atomic Force Microscope Deposition of Liquid Inks, Small, 2014, 10, 3717–3728. CrossrefGoogle Scholar

  • [52] Liu G., Zhou Y., Banga R. S., Boya R., Brown K. A., Chipre A. J., Nguyen S. T., Mirkin C. A., The role of viscosity on polymer ink transport in dip-pen nanolithography., Chem. Sci., 2013, 4, 2093–2099. CrossrefGoogle Scholar

  • [53] Binder H., The molecular architecture of lipid membranes - New insights from hydration-tuning infrared linear dichroism spectroscopy, Appl. Spectrosc. Rev., 2003, 38, 15–69. CrossrefGoogle Scholar

  • [54] Hristova K., White S. H., Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration, Biophys. J., 1998, 74, 2419–2433. CrossrefGoogle Scholar

  • [55] Wiener M. C., White S. H., Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups, Biophys. J., 1992, 61, 428–433. CrossrefGoogle Scholar

  • [56] Filippov A., Orädd G., Lindblom G., Influence of cholesterol and water content on phospholipid lateral diffusion in bilayers, Langmuir, 2003, 19, 6397–6400. CrossrefGoogle Scholar

  • [57] Lenhert S., Sun P., Wang Y., Fuchs H., Mirkin C. A., Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns, Small, 2007, 3, 71–75. CrossrefGoogle Scholar

  • [58] Lenhert S., Brinkmann F., Laue T., Walheim S., Vannahme C., Klinkhammer S., Xu M., et al., Lipid multilayer gratings, Nat. Nanotechnol., 2010, 5, 275–279. CrossrefGoogle Scholar

  • [59] Hirtz M., Oikonomou A., Georgiou T., Fuchs H., Vijayaraghavan A., Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography, Nat. Commun., 2013, 4, 2591. CrossrefGoogle Scholar

  • [60] Biswas S., Hirtz M., Fuchs H., Measurement of Mass Transfer during Dip‐Pen Nanolithography with Phospholipids, Small, 2011, 7, 2081–2086. CrossrefGoogle Scholar

  • [61] Förste A., Pfirrmann M., Sachs J., Gröger R., Walheim S., Brinkmann F., Hirtz M., Fuchs H., Schimmel T., Lipid droplets imaged by ultra large scale AFM: Prediction of the transferred ink volume in lipid-dip pen nanolithography, Nanotechnology, 2015, 26, 175303. CrossrefGoogle Scholar

  • [62] Lenhert S., Mirkin C. A., Fuchs H., In situ lipid dip-pen nanolithography under water, Scanning, 2010, 32, 15–23. Google Scholar

  • [63] Mohamad S., Noël O., Buraud J. L., Brotons G., Fedala Y., Ausserré D., Mechanism of lipid nanodrop spreading in a case of asymmetric wetting, Phys. Rev. Lett., 2012, 109, 248108. CrossrefGoogle Scholar

  • [64] Rädler J., Strey H., Sackmann E., Phenomenology and Kinetics of Lipid Bilayer Spreading on Hydrophilic Surfaces, Langmuir, 1995, 11, 4539–4548. CrossrefGoogle Scholar

  • [65] Nissen J., Gritsch S., Wiegand G., Rädler J. O., Wetting of phospholipid membranes on hydrophilic surfaces - Concepts towards self-healing membranes, Eur. Phys. J. B, 1999, 10, 335–344. CrossrefGoogle Scholar

  • [66] Sanii B., Parikh A. N., Surface-energy dependent spreading of lipid monolayers and bilayers, Soft Matter, 2007, 3, 974–977. Google Scholar

  • [67] Eichelsdoerfer D. J., Brown K. A., Wang M. X., Mirkin C. A., Role of Absorbed Solvent in Polymer Pen Lithography, J. Phys. Chem. B, 2013, 117, 16363–16368. CrossrefGoogle Scholar

  • [68] Xie Z., Shen Y., Zhou X., Yang Y., Tang Q., Miao Q., Su J., Wu H., Zheng Z., Polymer pen lithography using dual-elastomer tip arrays, Small, 2012, 8, 2664–2669. CrossrefGoogle Scholar

  • [69] Liao X., Braunschweig A. B., Mirkin C. A., ‘Force-feedback’ leveling of massively parallel arrays in polymer pen lithography, Nano Lett., 2010, 10, 1335–1340. CrossrefGoogle Scholar

  • [70] Zheng Z., Daniel W. L., Giam L. R., Huo F., Senesi A. J., Zheng G., Mirkin C. A., Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge, Angew. Chemie Int. Ed., 2009, 48, 7626–7629. CrossrefGoogle Scholar

  • [71] Zhong X., Bailey N. A., Schesing K. B., Bian S., Campos L. M., Braunschweig A. B., Materials for the preparation of polymer pen lithography tip arrays and a comparison of their printing properties, J. Polym. Sci. Part A Polym. Chem., 2013, 51, 1533–1539. CrossrefGoogle Scholar

  • [72] Bian S., He J., Schesing K. B., Braunschweig A. B., Polymer Pen Lithography (PPL)-Induced Site-Specific Click Chemistry for the Formation of Functional Glycan Arrays, Small, 2012, 8, 2000–2005. CrossrefGoogle Scholar

  • [73] Xie Z., Zhou Y., Hedrick J. L., Chen P.-C., He S., Shahjamali M. M., Wang S., Zheng Z., Mirkin C. A., On-Tip Photo-Modulated Molecular Printing, Angew. Chem. Int. Ed. Engl., 2015, 54, 12894–12899. CrossrefGoogle Scholar

About the article

Received: 2015-11-23

Accepted: 2015-12-23

Published Online: 2016-02-05


Citation Information: Nanofabrication, Volume 2, Issue 1, ISSN (Online) 2299-680X, DOI: https://doi.org/10.1515/nanofab-2015-0005.

Export Citation

© 2015 Ainhoa Urtizberea et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ravi Kumar, Ainhoa Urtizberea, Souvik Ghosh, Uwe Bog, Quinn Rainer, Steven Lenhert, Harald Fuchs, and Michael Hirtz
Langmuir, 2017
[2]
Uwe Bog, Andres de los Santos Pereira, Summer L. Mueller, Shana Havenridge, Viviana Parrillo, Michael Bruns, Andrea E. Holmes, Cesar Rodriguez-Emmenegger, Harald Fuchs, and Michael Hirtz
ACS Applied Materials & Interfaces, 2017, Volume 9, Number 13, Page 12109
[3]
Yana Krivoshapkina, Marcus Kaestner, Claudia Lenk, Steve Lenk, and Ivo W. Rangelow
Microelectronic Engineering, 2017, Volume 177, Page 78

Comments (0)

Please log in or register to comment.
Log in