Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Open Access
See all formats and pricing
More options …

Nanofabrication strategies for advanced electrode materials

Kunfeng Chen
  • State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dongfeng Xue
  • Corresponding author
  • State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-20 | DOI: https://doi.org/10.2478/nanofab-2017-0028


The development of advanced electrode materials for high-performance energy storage devices becomes more and more important for growing demand of portable electronics and electrical vehicles. To speed up this process, rapid screening of exceptional materials among various morphologies, structures and sizes of materials is urgently needed. Benefitting from the advance of nanotechnology, tremendous efforts have been devoted to the development of various nanofabrication strategies for advanced electrode materials. This review focuses on the analysis of novel nanofabrication strategies and progress in the field of fast screening advanced electrode materials. The basic design principles for chemical reaction, crystallization, electrochemical reaction to control the composition and nanostructure of final electrodes are reviewed. Novel fast nanofabrication strategies, such as burning, electrochemical exfoliation, and their basic principles are also summarized. More importantly, colloid system served as one up-front design can skip over the materials synthesis, accelerating the screening rate of highperformance electrode. This work encourages us to create innovative design ideas for rapid screening high-active electrode materials for applications in energy-related fields and beyond.

Keywords: nanomaterials; lithium battery; supercapattery; combustion synthesis; colloid


  • [1] Ghidiu M., Lukatskaya M. R., Zhao M. Q., Gogotsi Y., Barsoum M. W., Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516, 78-81.Google Scholar

  • [2] Liu X., Huang J., Zhang Q., Mai L., Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater., 2017, DOI: 10.1002/adma.201601759.CrossrefGoogle Scholar

  • [3] Simon P., Gogotsi Y., Dunn B., Where do batteries end and supercapacitors begin.Science. 2014, 343, 1210-1211.Google Scholar

  • [4] Hercule K. M., Wei Q., Asare O. K., Qu L., Khan A. M., Yan M., Mai L., Interconnected nanorods-nanoflakes Li2Co2(MoO4)3 framework structure with enhanced electrochemical properties for supercapacitors. Adv. Energy Mater., 2015, 5, 1500060.Google Scholar

  • [5] Jia H., Lin J., Liu Y., Chen S., Cai Y., Lei J., Feng J., Fei W., Nanosized core-shell structured graphene-MnO2 nanosheet arrays as stable electrodes for superior supercapacitors. J. Mater. Chem. A, 2017, DOI: 10.1039/C7TA02627g.CrossrefGoogle Scholar

  • [6] Huang G. M., Zhao X. L., Li F., Zhang L. L., Zhang Y. X., Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J. Power Sources, 2015, 277, 36-43.Google Scholar

  • [7] Sun H., Mei L., Liang J., Zhao Z., Lee C., Fei H., Ding M., Lau J., Li M., Wang C., Xu X., HSao G., Papandrea B., Shakir I., Dunn B., Huang Y., Duan X., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017, 356, 599-604.Google Scholar

  • [8] Lu C., Wang D., Zhao J., Han S., Chen W., A continuous carbon nitride polyhedron assembly for high-performance flexible supercapacitors. Adv. Funct. Mater., 2017, 27, 1606219.Google Scholar

  • [9] Stauber T., Kohler H., Quasi-flat plasmonic bands in twisted bilayer graphene. Nano Lett., 2016, 16, 6844.CrossrefGoogle Scholar

  • [10] Raji A., Salvatierra R., Kim N., Fan X., Li Y., Silva G., Sha J., Tour J., Lithium batteries with nearly maximum metal storage. ACS Nano, 2017, DOI: 10.1021/acsnano.7b02731.Google Scholar

  • [11] Liu Y, Wang Z., Zhong Y., Tade M., Zhou W., Shao Z., Molecular design of mesoporous NiCo2O4 and NiCo2S4 with sub-micrometerpolyhedron architectures for efficient pseudocapacitive energy storage. Adv. Funct. Mater., 2017, DOI: 10.1002/adfm.201701229.CrossrefGoogle Scholar

  • [12] Durham J., Poyraz A., Takeuchi E., Marschilok A., Takeuchi K., Impact of multifunctional bimetallic materials on lithium battery electrochemistry. Acc. Chem. Res., 2016, 49, 1864-1872.Google Scholar

  • [13] Kundu D., Adams B., Duffort V., Vajargah S., Nazar L., A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy, 2016, 1, 16119.Google Scholar

  • [14] Chen K., Xue D., Materials chemistry toward electrochemical energy storage. J. Mater. Chem. A, 2016, 4, 7522-7537.Google Scholar

  • [15] Chen K., Song S., Xue D., Beyond graphene: materials chemistry toward high performance inorganic functional materials. J. Mater. Chem. A, 2015, 3, 2441-2453.Google Scholar

  • [16] Chen K., Li G., Xue D., Architecture engineering of supercapacitor electrode materials. Funct. Mater. Lett., 2016, 9, 1640001.Google Scholar

  • [17] Liu J., Xue D., Thermal oxidation strategy towards porous metal oxide hollow architectures. Adv. Mater., 2008, 20, 2622-2627.CrossrefGoogle Scholar

  • [18] Chen K., Xue D., Rare earth and transitional metal colloidal supercapacitors. Sci. China Tech. Sci., 2015, 58, 1768-1778.Google Scholar

  • [19] Shang Y., Shao Y., Zhang D., et al., Recrystallization-induced self-assembly for the growth of Cu2O superstructures. Angew. Chem. Int. Ed., 2014, 53, 11514-11518.Google Scholar

  • [20] Yao K. X., Yin X. M., Wang T. H., et al., Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes. J. Am. Chem. Soc., 2010, 132, 6131-6144.Google Scholar

  • [21] Xu J., Xue D., Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals. Acta Mater., 2007, 55, 2397-2406.Google Scholar

  • [22] Chen K., Song S., Xue D. Faceted Cu2O structures with enhancing Li-ion battery anode performances. CrystEngComm, 2015, 17, 2110-2117.Google Scholar

  • [23] Chen K., Sun C., Xue D., Morphology engineering of high performance binary oxide electrodes. Phys. Chem. Chem. Phys., 2015, 17, 732-750.Google Scholar

  • [24] Chen K., Xue D., Room-temperature chemical transformation route to CuO nanowires toward high-performance electrode materials. J. Phys. Chem. C, 2013, 117, 22576-22583.Google Scholar

  • [25] Chen K., Xue D., A chemical reaction controlled mechanochemical route to construction of CuO nanoribbons for high performance lithium-ion batteries. Phys. Chem. Chem. Phys., 2013, 15, 19708-19714.CrossrefGoogle Scholar

  • [26] Chen K., Chemical reaction controlled synthesis of copper compounds and their materials performances, PhD thesis, Dalian University of Technology, Dalian, China, 2014.Google Scholar

  • [27] Zhao X., Bao Z., Sun C., Xue D., Polymorphology formation of Cu2O: a microscopic understanding of single crystal growth from both thermodynamic and kinetic models. J. Cryst. Growth, 2009, 311, 711-715.Google Scholar

  • [28] Xue D., Li K., Liu J., Sun C., Chen K., Crystallization and functionality of inorganic materials. Mater. Res. Bull., 2012, 47, 2838-2842.Google Scholar

  • [29] Leng M., Liu M., Zhang Y., et al., Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: synthesis and enhanced catalytic CO oxidation activity. J. Am. Chem. Soc., 2010, 132, 17084-17087.Google Scholar

  • [30] Chen K., Song S., Xue D., Hopper-like framework growth evolution in a cubic system: a case study of Cu2O. J. Appl. Crystallogr., 2013, 46, 1603-1609.CrossrefGoogle Scholar

  • [31] Chen K., Xue D., pH-assisted crystallization of Cu2O: chemical reactions control the evolution from nanowires to polyhedra. CrystEngComm, 2012, 14, 8068-8075.CrossrefGoogle Scholar

  • [32] Chen K., Xue D., Chemoaffinity-mediated crystallization of Cu2O: a reaction effect on crystal growth and anode property. CrystEngComm, 2013, 15, 1739-1746.CrossrefGoogle Scholar

  • [33] Chen K., Song S., Xue D., Chemical reaction controlled synthesis of Cu2O hollow octahedra and core-shell structures. CrystEngComm, 2013, 15, 10028-10033.CrossrefGoogle Scholar

  • [34] Chen K., Sun C., Song S., et al. Polymorphic crystallization of Cu2O compound. CrystEngComm, 2014, 16, 5257-5267.CrossrefGoogle Scholar

  • [35] Chen K., Liu F., Xue D., et al. Beyond theoretical capacity in Cu-based integrated anode: insight into the structural evolution of CuO. J. Power Sources, 2015, 275, 136-143.Google Scholar

  • [36] Chen K., Xue D., Ex-situ identification of Cu+ long-range diffusion path of Cu-based anode for lithium ion battery. Phys. Chem. Chem. Phys., 2014, 16, 11168-11172.CrossrefGoogle Scholar

  • [37] Chen K., Song S., Xue D., Vapor-phase crystallization route to oxidized Cu foils in air as anode materials for lithium-ion batteries. CrystEngComm, 2013, 15, 144-151.Google Scholar

  • [38] Park J. C., Kim J., Kwon H., et al., Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater., 2009, 21, 803-807.Google Scholar

  • [39] Ke F., Huang L., Wei G., et al., One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim. Acta, 2009, 54, 5825-5829.Google Scholar

  • [40] Huang H., Yu Q., Ye Y., et al., Thin copper oxide nanowires/ carbon nanotubes interpenetrating networks for lithium ion batteries. CrystEngComm, 2012, 14, 7294-7300.CrossrefGoogle Scholar

  • [41] Ko S., Lee J., Yang H., et al., Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv. Mater., 2012, 24, 4451-4456.CrossrefGoogle Scholar

  • [42] Xiang J. Y., Tu J. P., Zhang L., et al., Self-assembled synthesis of hierarchical nanostructured cuo with various morphologies and their application as anodes for lithium ion batteries. J. Power Sources, 2010, 19, 313-319.CrossrefGoogle Scholar

  • [43] Zhang W., Li M., Wang Q., et al., Hierarchical self-assembly of microscale cog-like superstructures for enhanced performance in lithium-ion batteries. Adv. Funct. Mater., 2011, 21, 3516-3523.CrossrefGoogle Scholar

  • [44] Chen L. B., Lu N., Xu C. M., et al., Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim. Acta, 2009, 54, 4198-4201.Google Scholar

  • [45] Choi C. S., Park Y., Kim H., et al., Three-dimensional sponge-like architectured cupric oxides as high-power and long-life anode material for lithium rechargeable batteries. Electrochim. Acta, 2012, 70, 98-104.Google Scholar

  • [46] Chen X., Zhang N., Sun K., Facile fabrication of CuO 1D pine-needle-like arrays for super-rate lithium storage. J. Mater. Chem., 2012, 22, 15080-15084.Google Scholar

  • [47] Wang L., Cheng W., Gong H., et al., Facile synthesis of nanocrystalline- assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. J. Mater. Chem., 2012, 11297-11302.CrossrefGoogle Scholar

  • [48] Kitchaev D. A., Dacek S. T., Sun W., Ceder G., Thermodynamics of phase selection in MnO2 framework structures through alkali intercalation and hydration. J. Am. Chem. Soc. 2017, 139, 2672−2681.Google Scholar

  • [49] Yuan Y., Nie A., Odegard G. M., Xu R., Zhou D., Santhanagopalan S., He K., Asayesh-Ardakani H., Meng D. D., Klie R. F., Johnson C., Lu J., Shahbazian-Yassar R. Asynchronous crystal cell expansion during lithiation of K+-stabilized α-MnO2. Nano Lett., 2015, 15, 2998-3007.Google Scholar

  • [50] Wei W., Cui X., Chen W., Ivey D. G., Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev., 2011, 40, 1697-1721.CrossrefGoogle Scholar

  • [51] Zhang Y., Sun C., Lu P., Li K., Song S. Xue D., Crystallization design of MnO2 towards better supercapacitance. CrystEngComm, 2012, 14, 5892-5897.CrossrefGoogle Scholar

  • [52] Zhang Y., Xue D., Mild synthesis route to nanostructured α-MnO2 as electrode materials for electrochemical energy storage. Funct. Mater. Lett., 2012, 5, 1250030.Google Scholar

  • [53] Sun C., Zhang Y., Song S. Xue D., Tunnel-dependent supercapacitance of MnO2: effects of crystal structure. J. Appl. Crystallogr., 2013, 46, 1128-1135.Google Scholar

  • [54] Li L., Guo Z., Du A., Liu H., Rapid microwave-assisted synthesis of Mn3O4−graphene nanocomposite and its lithium storage properties. J. Mater. Chem., 2012, 22, 3600−3605.CrossrefGoogle Scholar

  • [55] Chen K., Noh Y., Li K., et al., Microwave-hydrothermal crystallization of polymorphic MnO2 for electrochemical energy storage. J. Phys. Chem. C, 2013, 117, 10770-10779.Google Scholar

  • [56] Huang S., Wilson B. E., Wang B., Fang Y., Buffington K., Stein A., Truhlar D. G., Y-doped Li8ZrO6: A Li-ion battery cathode material with high capacity. J. Am. Chem. Soc., 2015, 137, 10992−11003.Google Scholar

  • [57] Zhu J., Liu G., Liu Z., Chu Z., Jin W., Xu N., Unprecedented perovskite oxyfluoride membranes with high-efficiency oxygen ion transport paths for low-temperature oxygen permeation. Adv. Mater., 2016, 28, 3511−3515.CrossrefGoogle Scholar

  • [58] Chen K., Pan W., Xue D., Phase transformation of Ce3+-doped MnO2 for pseudocapacitive electrode materials. J. Phys. Chem. C, 2016, 120, 20077-20081.Google Scholar

  • [59] Wang H., Zhang J., Hang X., Zhang X., Xie J., Pan B., Xie Y., Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angew. Chem. Int. Ed., 2015, 54, 1195-1199.Google Scholar

  • [60] Zhang P., Yuan J., Fellinger T., Antonietti M., Li H., Wang Y., Improving hydrothermal carbonization by using poly(ionic liquid) s. Angew. Chem. Int. Ed., 2013, 52, 6028-6032.CrossrefGoogle Scholar

  • [61] Li F., Ran J., Jaroniec M., Qiao S. Z., Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale, 2015, 7, 17590-17610.Google Scholar

  • [62] Rajeshwar K., Tacconi N. R., Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation. Chem. Soc. Rev., 2009, 38, 1984-1998.CrossrefGoogle Scholar

  • [63] Koirala R., Pratsinis S. E., Baiker, A. synthesis of catalytic materials in flames: opportunities and challenges. Chem. Soc. Rev., 2016, 45, 3053-3068.Google Scholar

  • [64] Chen K., Xue D., Crystallization of transition metal oxides within 12 seconds. CrystEngComm, 2017, 19, 1230-1238.CrossrefGoogle Scholar

  • [65] Liu F., Song S., Xue D., Zhang, H., Folded structured graphene paper for high performance electrode materials. Adv. Mater., 2012, 24, 1089-1094.CrossrefGoogle Scholar

  • [66] Zhang Y., Chen P., Gao X., Wang B., Liu H., Wu H., Liu H., Dou S., Nitrogen-doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3d porous electrodes for fast and durable lithium storage. Adv. Funct. Mater., 2016, 26, 7754-7765.CrossrefGoogle Scholar

  • [67] Chen K., Song S., Liu F., Xue D., Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 2015, 44, 6230-6257.Google Scholar

  • [68] Shih C. J., Vijayaraghavan, A., Krishnan R., Sharma R., Han J. H., Ham M. H., Jin Z., Lin S. C., Paulus G. L. C., Reuel N. F., Wang Q. H., Blankschtein D., Strano M. S., Bi- and Trilayer Graphene Solutions. Nature Nanotechnol., 2011, 6, 439-445.Google Scholar

  • [69] Lee Y., Bae S., Jang H., Jang S., Zhu S. E., Sim S. H., Song Y. I., Hong B. H., Ahn J. H., Wafer-scale synthesis and transfer of graphene films. Nano Lett., 2010, 10, 490-493.Google Scholar

  • [70] Parvez K., Wu Z., Li R., Liu X., Graf, R., Feng, X., Mullen, K., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc., 2014, 136, 6083-6091.Google Scholar

  • [71] Chen K., Xue D. Preparation of colloidal graphene in quantity by electrochemical exfoliation. J. Colloid Interface Sci., 2014, 436, 41-46.Google Scholar

  • [72] Chen K., Xue D., Komarneni S., Nanoclay assisted electrochemical exfoliation of pencil core to high conductive graphene thin-film electrode. J, Colloid Interface Sci., 2017, 487, 156-161.Google Scholar

  • [73] Wang H., Bai Y., Wu Q., Zhou W., Zhang H., Li J., Guo L., Rutile TiO2 Nano-branched Arrays on FTO for Dye-sensitized Solar Cells, Phys. Chem. Chem. Phys., 2011, 13, 7008.Google Scholar

  • [74] Tu X., Luo S., Chen G., Li J., One-pot Synthesis, Characterization, and Enhanced Photocatalytic Activity of the BiOBr-Graphene Composites, Chem. Eur. J., 2012, 18, 14359-14366.CrossrefGoogle Scholar

  • [75] Lu X. B., Zhou J., Zhao Y. H., Qiu Y., Li J., Room temperature ionic liquid based polystyrene nanofibers with superhydrophobility and conductivity produced by electrospinning, Chem. Mater., 2008, 20, 3420-3424.CrossrefGoogle Scholar

  • [76] Long X., Wang Z., Xiao S., An Y., Yang S., Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today, 2016, 19, 213-226.CrossrefGoogle Scholar

  • [77] Zhao J., Chen J., Xu S., Shao M., Yan D., Wei M., Evans D. G., Duan X., CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices. J. Mater. Chem. A, 2013, 1, 8836-8843.Google Scholar

  • [78] Li Y., Zhang L., Xiang X., Yan D., Li F., Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. J. Mater. Chem. A, 2014, 2, 13250-13258.Google Scholar

  • [79] Huynh M., Shi C., Billinge S., Nocera D., Nature of activated manganese oxide for oxygen evolution. J. Am. Chem. Soc., 2015, 137, 14887-14904.Google Scholar

  • [80] Tao F., Dag S., Wang L., Liu Z., Butcher D. R., Bluhm H., Salmeron M., Somorjai G. A., Break-up of stepped platinum catalyst surfaces by high Co coverage. Science, 2010, 327, 850−863.Google Scholar

  • [81] Wang F., Robert R., Chernova N. A., Pereira N., Omenya F. , Badway F. , Hua X., Ruotolo M., Zhang R., Wu L., Volkov V., Su D., Key B., Whittingham M. S., Grey C. P., Amatucci G. G., Zhu Y., Graetz J., Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc., 2011, 133, 18828−18836.Google Scholar

  • [82] Chen K., Xue D., High Energy Density Hybrid supercapacitor: in-situ functionalization of vanadium-based colloidal cathode. ACS Appl. Mater. Interfaces, 2016, 8, 29522-29528.Google Scholar

  • [83] Chen K., Xue D., Colloidal supercapacitor electrode materials. Mater. Res. Bull., 2016, 83, 201-206.Google Scholar

  • [84] Chen K., Xue D., In situ electrochemical activation of Ni-based colloids from an NiCl2 electrode and their advanced energy storage performance. Nanoscale, 2016, 8, 17090-17095.Google Scholar

  • [85] Chen K., Xue D., Rare earth and transitional metal colloidal supercapacitors. Sci. China Technol. Sci., 2015, 58, 1768-1778.Google Scholar

  • [86] Chen X., Chen K., Wang H., Xue D., A colloidal pseudocapacitor: direct use of Fe(NO3)3 in electrode can lead to a high performance alkaline supercapacitor system. J. Colloid Interface Sci., 2015, 444, 49-57.Google Scholar

  • [87] Chen K., Xue D., Komarneni S., Colloidal pseudocapacitor: nanoscale aggregation of Mn colloids from MnCl2 under alkaline condition. J. Power Sources, 2015, 279, 365-371.Google Scholar

  • [88] Chen K., Yin S., Xue D., Binary AxB1-x ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in-situ electric field assisted coprecipitation. Nanoscale, 2015, 7, 1161-1166.Google Scholar

  • [89] Chen K., Xue D., Ionic supercapacitor electrode materials: a system-level design of electrode and electrolyte for transforming ions into colloids. Colloids Interface Sci. Commun., 2014, 1, 39-42.Google Scholar

  • [90] Chen K., Song S., Xue D., An ionic aqueous pseudocapacitor system: electroactive ions in both salt-electrode and redoxelectrolyte. RSC Adv., 2014, 4, 23338-23343.Google Scholar

  • [91] Chen K., Xue D., YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance. J. Colloid Interface Sc., 2014, 424, 84-89.Google Scholar

  • [92] Chen K., Yang Y., Li K., Ma Z., Zhou Y., Xue D., CoCl2 designed as excellent pseudocapacitor electrode materials. ACS Sustainable Chem. Eng., 2014, 2, 440−444.Google Scholar

  • [93] Chen K., Song S., Li K., Xue D., Water-soluble inorganic salts with ultrahigh specific capacitance: crystallization transformation investigation of CuCl2 electrodes. CrystEngComm, 2013, 15, 10367-10373.CrossrefGoogle Scholar

About the article

Received: 2017-06-06

Accepted: 2017-08-09

Published Online: 2017-09-20

Citation Information: Nanofabrication, Volume 3, Issue 1, Pages 1–15, ISSN (Online) 2299-680X, DOI: https://doi.org/10.2478/nanofab-2017-0028.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shuijing Sun, Chan Liao, Ahmed M. Hafez, Hongli Zhu, and Songping Wu
Chemical Engineering Journal, 2018, Volume 338, Page 27
Kunfeng Chen and Dongfeng Xue
Nanotechnology, 2018, Volume 29, Number 2, Page 024003

Comments (0)

Please log in or register to comment.
Log in