Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Open Access
See all formats and pricing
More options …

Bio-surface engineering with DNA scaffolds for theranostic applications

Xiwei Wang
  • Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wei Lai
  • Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tiantian Man
  • Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiangmeng Qu
  • Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Li Li
  • Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arun Richard Chandrasekaran / Hao Pei
  • Corresponding author
  • Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-17 | DOI: https://doi.org/10.1515/nanofab-2018-0001


Biosensor design is important to bioanalysis yet challenged by the restricted target accessibility at the biomolecule-surface (bio-surface). The last two decades have witnessed the appearance of various “art-like” DNA nanostructures in one, two, or three dimensions, and DNA nanostructures have attracted tremendous attention for applications in diagnosis and therapy due to their unique properties (e.g., mechanical flexibility, programmable control over their shape and size, easy and high-yield preparation, precise spatial addressability and biocompatibility). DNA nanotechnology is capable of providing an effective approach to control the surface functionality, thereby increasing the molecular recognition ability at the biosurface. Herein, we present a critical review of recent progress in the development of DNA nanostructures in one, two and three dimensions and highlight their biological applications including diagnostics and therapeutics. We hope that this review provides a guideline for bio-surface engineering with DNA nanostructures.

Keywords: DNA nanostructures; theranostic application; diagnostics; therapeutics; bio-surface programmable; biosensor


  • [1] Seeman N., Nucleic acid junctions and lattices, J. Theor. Biol., 1982, 99, 237-247.Google Scholar

  • [2] Winfree E., Liu F.R., Wenzler L.A., Seeman N.C., Design and self-assembly of two-dimensional DNA crystals, Nature, 1998, 394, 539-544.Google Scholar

  • [3] Rothemund P.W.K., Folding DNA to create nano- scale shapes and patterns, Nature, 2006, 440, 297-302.Google Scholar

  • [4] Yin P., Choi H.M.T., Calvert C.R., Pierce N.A., Programming biomolecular self-assembly pathways, Nature, 2008, 451, 318-322.Google Scholar

  • [5] He Y., Ye T., Su M., Zhang C., Ribbe A.E., Jiang W., Mao C., Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra, Nature, 2008, 452, 198-201.Google Scholar

  • [6] Douglas S.M., Dietz H., Liedl T., Hoegberg B., Graf F., Shih W.M., Self-assembly of DNA into nanoscale three-dimensional shapes, Nature, 2009, 459, 414-418.Google Scholar

  • [7] Adleman L.M., Molecular computation of solutions to combinatorial problems, Science, 1994, 266, 1021-1024.Google Scholar

  • [8] Barish R.D., Schulman R., Rothemund P.W.K., Winfree E., An information-bearing seed for nucleating algorithmic self-assembly, Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 6054-6059.Google Scholar

  • [9] Seelig G., Soloveichik D., Zhang D.Y., Winfree E., Enzyme-free nucleic acid logic circuits, Science, 2006, 314, 1585-1588.Google Scholar

  • [10] Yurke B., Turberfield A.J., Mills A.P., Simmel F.C., Neumann J.L., A DNA-fuelled molecular machine made of DNA, Nature, 2000, 406, 605-608.Google Scholar

  • [11] Lund K., Manzo A.J., Dabby N., Michelotti N., Johnson-Buck A., Nangreave J., Taylor S., Pei R., Stojanovic M.N., Walter N.G., Winfree E., Yan H., Molecular robots guided by prescriptive landscapes, Nature, 2010, 465, 206-210.Google Scholar

  • [12] Zhong R., Xiao M., Zhu C., Shen X., Tang Q., Zhang W., Wang L., Song S., Qu X., Pei H., Wang, C., Li L., Logic catalytic interconversion of G-molecular hydrogel, ACS Appl. Mater. Inter., 2018, 10, 4512-4518.Google Scholar

  • [13] Xiao M., Man T., Zhu C., Pei H., Shi J., Li L., Qu X., Shen X., Li J., MoS2 nanoprobe for microRNA quantification based on duplexspecific nuclease signal amplification, ACS Appl. Mater. Inter., DOI: 10.1021/acsami.7b18984.CrossrefGoogle Scholar

  • [14] Gu H., Chao J., Xiao S.-J., Seeman N.C., A proximity-based programmable DNA nanoscale assembly line, Nature, 2010, 465, 202-205.Google Scholar

  • [15] Voigt N.V., Torring T., Rotaru A., Jacobsen M.F., Ravnsbaek J.B., Subramani R., Mamdouh W., Kjems J., Mokhir A., Besenbacher F., Gothelf K.V., Single-molecule chemical reactions on DNA origami, Nat. Nanotechnol., 2010, 5, 200-203.CrossrefGoogle Scholar

  • [16] Liu M., Fu J., Hejesen C., Yang Y., Woodbury N.W., Gothelf K., Liu Y., Yan H., A DNA tweezer-actuated enzyme nanoreactor, Nat. Commun., 2013, 4, 3127.Google Scholar

  • [17] Kuzyk A., Schreiber R., Fan Z., Pardatscher G., Roller E.-M., Hoegele A., Simmel F.C., Govorov A.O., Liedl T., DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response, Nature, 2012, 483, 311-314.Google Scholar

  • [18] Thacker V.V., Herrmann L.O., Sigle D.O., Zhang T., Liedl T., Baumberg J.J., Keyser U.F., DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering, Nat. Commun., 2014, 5, 4448.Google Scholar

  • [19] Chao J., Lin Y., Liu H., Wang L., Fan C., DNA-based plasmonic nanostructures, Mater. Today, 2015, 18, 326-335.Google Scholar

  • [20] Shen X., Song C., Wang J., Shi D., Wang Z., Liu N., Ding B., Rolling up gold nanoparticle-dressed DNA origami into threedimensional plasmonic chiral nanostructures, J. Am. Chem. Soc., 2011, 134, 146-149.Google Scholar

  • [21] Pei H., Zuo X.L., Zhu D., Huang Q., Fan C.H., Functional DNA nanostructures for theranostic applications, Acc. Chem. Res., 2014, 47, 550-559.Google Scholar

  • [22] Chen J., Seeman N.C., Synthesis from DNA of a molecule with the connectivity of a cube, Nature, 1991, 350, 631.Google Scholar

  • [23] Zhang C., Ko S.H., Su M., Leng Y., Ribbe A.E., Jiang W., Mao C., Symmetry controls the face geometry of DNA polyhedra, J. Am. Chem. Soc., 2009, 131, 1413-1415.Google Scholar

  • [24] Goodman R.P., Schaap I.A.T., Tardin C.F., Erben C.M., Berry R.M., Schmidt C.F., Turberfield A.J., Rapid chiral assembly of rigid DNA buildingblocks for molecular nanofabrication, Science, 2005, 310, 1661.Google Scholar

  • [25] He Y., Ye T., Su M., Zhang C., Ribbe A.E., Jiang W., Mao C., Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra, Nature, 2008, 452, 198.Google Scholar

  • [26] Zhang Y., Seeman N.C., Construction of a DNA-truncated octahedron, J. Am. Chem. Soc., 1994, 116, 1661-1669.Google Scholar

  • [27] Shih W.M., Quispe J.D., Joyce G.F., A 1.7-kilobase singlestranded DNA that folds into a nanoscale octahedron, Nature, 2004, 427, 618.Google Scholar

  • [28] Bhatia D., Mehtab S., Krishnan R., Indi S.S., Basu A., Krishnan Y., Icosahedral DNA nanocapsules by modular assembly, Angew. Chem. Int. Edit., 2009, 48, 4134-4137.CrossrefGoogle Scholar

  • [29] Zhang C., Su M., He Y., Zhao X., Fang P.A., Ribbe A.E., Jiang W., Mao C.D., Conformational flexibility facilitates self-assembly of complex DNA nanostructures, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 10665-10669.Google Scholar

  • [30] Aldaye F.A., Sleiman H.F., Modular access to structurally switchable 3D discrete DNA assemblies, J. Am. Chem. Soc., 2007, 129, 13376-13377.Google Scholar

  • [31] Chandrasekaran A.R., Levchenko O., DNA nanocages, Chem. Mater., 2016, 28, 5569-5581.CrossrefGoogle Scholar

  • [32] Schnitzler T., Herrmann A., DNA block copolymers: functional materials for nanoscience and biomedicine, Accounts Chem. Res., 2012, 45, 1419-1430.Google Scholar

  • [33] Zhong R., Tang Q., Wang S., Zhang H., Zhang F., Xiao M., Man T., Qu X., Li L., Zhang W., Pei H., Self‐assembly of enzyme‐like nanofibrous G‐molecular hydrogel for printed flexible electrochemical sensors, Adv. Mater., 2018, 1706887.https://doi.org/10.1002/adma.201706887.Google Scholar

  • [34] Rodriguez‐Pulido A., Kondrachuk A.I., Prusty D.K., Gao J., Loi M.A., Herrmann A. Light‐triggered sequence‐specific cargo release from DNA block copolymer-lipid vesicles, Angew. Chem. Int. Ed., 2013, 125, 1042-1046.Google Scholar

  • [35] LaBean T.H., Yan H., Kopatsch J., Liu F., Winfree E., Reif J.H., Seeman N.C., Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes, J. Am. Chem. Soc., 2000, 122, 1848-1860.Google Scholar

  • [36] Majumder U., Rangnekar A., Gothelf K.V., Reif J.H., LaBean T.H., Design and construction of double-decker Tile as a route to Three-Dimensional periodic assembly of DNA, J. Am. Chem. Soc., 2011, 133, 3843-3845.Google Scholar

  • [37] Liu D., Wang M., Deng Z., Walulu R., Mao C., Tensegrity: construction of rigid DNA Triangles with flexible four-arm DNA junctions, J. Am. Chem. Soc., 2004, 126, 2324-2325.Google Scholar

  • [38] Zheng J., Constantinou P.E., Micheel C., Alivisatos A.P., Kiehl R.A., Seeman N.C., Two-Dimensional nanoparticle arrays show the organizational power of robust DNA motifs, Nano Lett., 2006, 6, 1502-1504.CrossrefPubMedGoogle Scholar

  • [39] He Y., Chen Y., Liu H., Ribbe A.E., Mao C., Self-assembly of hexagonal DNA Two-Dimensional (2D) Arrays, J. Am. Chem. Soc., 2005, 127, 12202-12203.Google Scholar

  • [40] He Y., Tian Y., Chen Y., Deng Z., Ribbe A.E., Mao C., Sequence symmetry as a tool for designing DNA nanostructures, Angew. Chem., 2005, 117, 6852-6854.Google Scholar

  • [41] He Y., Tian Y., Ribbe A.E., Mao C., Highly connected Two-Dimensional crystals of DNA six-point-stars, J. Am. Chem. Soc., 2006, 128, 15978-15979.Google Scholar

  • [42] Shen W., Liu Q., Ding B., Shen Z., Zhu C., Mao C., The study of the paranemic crossover (PX) motif in the context of self-assembly of DNA 2D crystals, Org. Biomol. Chem., 2016, 14, 7187-7190.CrossrefGoogle Scholar

  • [43] Shen W.L., Liu Q., Ding B.Q., Zhu C.Q., Shen Z.Y., Seeman N.C., Facilitation of DNA self-assembly by relieving the torsional strains between building blocks, Org. Biomol. Chem., 2017, 15, 465-469.Google Scholar

  • [44] Chandrasekaran A.R., Programmable DNA scaffolds for spatially-ordered protein assembly, Nanoscale, 2016, 8, 4436-4446.PubMedGoogle Scholar

  • [45] Zheng J.P., Birktoft J.J., Chen Y., Wang T., Sha R.J., Constantinou P.E., Ginell S.L., Mao C.D., Seeman N.C., From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal, Nature, 2009, 461, 74-77.Google Scholar

  • [46] Nguyen N., Birktoft J.J., Sha R., Wang T., Zheng J., Constantinou P.E., Ginell S.L., Chen Y., Mao C., Seeman N.C., The absence of tertiary interactions in a self-assembled DNA crystal structure, J. Mol. Recognit., 2012, 25, 234-237.CrossrefGoogle Scholar

  • [47] Rusling D.A., Chandrasekaran A.R., Ohayon Y.P., Brown T., Fox K.R., Sha R., Mao C., Seeman N.C., Functionalizing designer DNA crystals with a triple-helical veneer, Angew. Chem., 2014, 53, 3979-3982.Google Scholar

  • [48] Wang X., Sha R.J., Kristiansen M., Hernandez C., Hao Y.D., Mao C.D., Canary J.W., Seeman N.C., An organic semiconductor organized into 3D DNA arrays by “bottom-up” rational design, Angew. Chem. Int. Edit., 2017, 56, 6445-6448.Google Scholar

  • [49] Hao Y.D., Kristiansen M., Sha R.J., Birktoft J.J., Hernandez C., Mao C.D., Seeman N.C., A device that operates within a self-assembled 3D DNA crystal, Nat. Chem., 2017, 9, 824-827.Google Scholar

  • [50] Hernandez C., Birktoft J.J., Ohayon Y.P., Chandrasekaran A.R., Abdallah H., Sha R.J., Stojanoff V., Mao C.D., Seeman N.C., Self-assembly of 3D DNA crystals containing a torsionally stressed component, Cell. Chem. Biol., 2017, 24, 1401-1406.CrossrefPubMedGoogle Scholar

  • [51] Dietz H., Douglas S.M., Shih W.M., Folding DNA into twisted and curved nanoscale shapes, Science, 2009, 325, 725-730.Google Scholar

  • [52] Douglas S.M., Dietz H., Liedl T., Hogberg B., Graf F., Shih W.M., Self-assembly of DNA into nanoscale three-dimensional shapes, Nature, 2009, 459, 414-418.Google Scholar

  • [53] Andersen E.S., Dong M., Nielsen M.M., Jahn K., Subramani R., Mamdouh W., Golas M.M., Sander B., Stark H., Oliveira C.L.P., Pedersen J.S., Birkedal V., Besenbacher F., Gothelf K.V., Kjems J., Self-assembly of a nanoscale DNA box with a controllable lid, Nature, 2009, 459, 73-U75.Google Scholar

  • [54] Han D.R., Pal S., Nangreave J., Deng Z.T., Liu Y., Yan H., DNA origami with complex curvatures in Three-Dimensional space, Science, 2011, 332, 342-346.Google Scholar

  • [55] Zhang F., Jiang S.X., Wu S.Y., Li Y.L., Mao C.D., Liu Y., Yan H., Complex wireframe DNA origami nanostructures with multi-arm junction vertices, Nat. Nanotechnol., 2015, 10, 779-784.Google Scholar

  • [56] Benson E., Mohammed A., Gardell J., Masich S., Czeizler E., Orponen P., Hogberg B., DNA rendering of polyhedral meshes at the nanoscale, Nature, 2015, 523, 441-444.Google Scholar

  • [57] Liu W.Y., Zhong H., Wang R.S., Seeman N.C., Crystalline Two-Dimensional DNA-origami Arrays, Angew. Chem. Int. Edit., 2011, 50, 264-267.CrossrefGoogle Scholar

  • [58] Yin P., Hariadi R.F., Sahu S., Choi H.M.T., Park S.H., LaBean T.H., Reif J.H., Programming DNA tube circumferences, Science, 2008, 321, 824-826.Google Scholar

  • [59] Wei B., Dai M.J., Yin P., Complex shapes self-assembled from single-stranded DNA tiles, Nature, 2012, 485, 623-626.Google Scholar

  • [60] Ke Y.G., Ong L.L., Shih W.M., Yin P., Three-Dimensional structures self-assembled from DNA bricks, Science, 2012, 338, 1177-1183.Google Scholar

  • [61] Kwak M., Herrmann A., Nucleic acid/organic polymer hybrid materials: synthesis, superstructures, and applications, Angew. Chem. Int. Ed., 2010, 49, 8574-8587.Google Scholar

  • [62] Kwak M., Herrmann, A., Nucleic acid amphiphiles: synthesis and self-assembled nanostructures, Chem. Soc. Rev., 2011, 40, 5745-5755.CrossrefPubMedGoogle Scholar

  • [63] Kwiat M., Elnathan R., Kwak M., de Vries J.W., Pevzner A., Engel Y., Burstein L., Khatchtourints A., Lichtenstein A., Flaxer E., Herrmann A., Patolsky F., Non-covalent monolayer-piercing anchoring of lipophilic nucleic acids: preparation, characterization, and sensing applications, J. Am. Chem. Soc., 2012, 134, 280-292.Google Scholar

  • [64] Liu K., Chen D., Marcozzi A., Zheng L., Su J., Pesce D., Zajaczkowski W., Kolbe A., Pisula W., Mullen K., Clark N.A., Herrmann A., Thermotropic liquid crystals from biomacromolecules, P. Natl. Acad. Sci. U.S.A., 2014, 111, 18596-18600.Google Scholar

  • [65] Liu K., Varghese J., Gerasimov J.Y., Polyakov A.O., Shuai M., Su J., Zajaczkowski W., Marcozzi A., Pisula W., Noheda, B. Palstra T. T.M., Clark N. A. Herrmann A., Controlling the volatility of the written optical state in electrochromic DNA liquid crystals, Nat. Commun., (2016), 7, 11476.Google Scholar

  • [66] Liu K., Zheng L., Ma C., Gostl R., Herrmann A., DNA-surfactant complexes: self-assembly properties and applications, Chem. Soc. Rev., 2017, 46, 5147-5172.CrossrefPubMedGoogle Scholar

  • [67] Liu K., Zheng L., Liu Q., de Vries J.W., Gerasimov J.Y., Herrmann A., Nucleic acid chemistry in the organic phase: from functionalized oligonucleotides to DNA side chain polymers, J. Am. Chem. Soc., 2014, 136, 14255-14262.Google Scholar

  • [68] Wilks T.R., Bath J., de Vries J.W., Raymond J.E., Herrmann A., Turberfield A.J., O’Reilly R.K., “Giant surfactants” created by the fast and efficient functionalization of a DNA tetrahedron with a temperature-responsive polymer, ACS Nano, 2013, 7, 8561-8572.CrossrefGoogle Scholar

  • [69] Herne T.M., Tarlov M.J., Characterization of DNA probes immobilized on gold surfaces, J. Am. Chem. Soc., 1997, 119, 8916-8920.Google Scholar

  • [70] Kimura-Suda H., Petrovykh D.Y., Tarlov M.J., Whitman L.J., Base-dependent competitive adsorption of single-stranded DNA on gold, J. Am. Chem. Soc., 2003, 125, 9014-9015.Google Scholar

  • [71] Walker H.W., Grant S.B., Conformation of DNA block copolymer molecules adsorbed on latex particles as revealed by hydroxyl radical footprinting, Langmuir, 1995, 11, 3772-3777.CrossrefGoogle Scholar

  • [72] Charreyre M.T., Tcherkasskaya O., Winnik M.A., Hiver A., Delair T., Cros P., Pichot C., Mandrand B., Fluorescence energy transfer study of the conformation of oligonucleotides covalently bound to polystyrene latex particles, Langmuir, 1997, 13, 3103-3110.Google Scholar

  • [73] Petrovykh D.Y., Perez-Dieste V., Opdahl A., Kimura-Suda H., Sullivan J.M., Tarlov M.J., Himpsel F.J., Whitman L.J., Nucleobase orientation and ordering in films of single-stranded DNA on gold, J. Am. Chem. Soc., 2006, 128, 2-3.Google Scholar

  • [74] Levicky R., Herne T.M., Tarlov M.J., Satija S.K., Using self-assembly to control the structure of DNA monolayers on gold: A neutron reflectivity study, J. Am. Chem. Soc., 1998, 120, 9787-9792.Google Scholar

  • [75] Qu X., Li M., Zhang H., Lin C., Wang F., Xiao M., Zhou Y., Shi J., Aldalbahi A., Pei H., Chen H., Li L., Real-time continuous identification of greenhouse plant pathogens based on recyclable microfluidic bioassay system, ACS Appl. Mater. Inter., 2017, 9, 31568-31575.Google Scholar

  • [76] Liu D.S., Bruckbauer A., Abell C., Balasubramanian S., Kang D.J., Klenerman D., Zhou D.J., A reversible pH-driven DNA nanoswitch array, J. Am. Chem. Soc., 2006, 128, 2067-2071.Google Scholar

  • [77] Qu X., Zhu D., Yao G., Su S., Chao J., Liu H., Zuo X., Wang L., Shi J., Wang L., Huang W., Pei H., Fan C., An exonuclease III-powered, on-particle stochastic DNA walker, Angew. Chem., 2017, 56, 1855-1858.Google Scholar

  • [78] Josephs E.A., Ye T., A Single-Molecule View of Conformational Switching of DNA Tethered to a Gold Electrode, J. Am. Chem. Soc., 2012, 134, 10021-10030.Google Scholar

  • [79] Fan C.H., Plaxco K.W., Heeger A.J., Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA, Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 9134-9137.CrossrefGoogle Scholar

  • [80] Lai R.Y., Lagally E.T., Lee S.H., Soh H.T., Plaxco K.W., Heeger A.J., Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor, Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 4017-4021.Google Scholar

  • [81] Bockisch B., Grunwald T., Spillner E., Bredehorst R., Immobilized stem-loop structured probes as conformational switches for enzymatic detection of microbial 16S rRNA, Nucleic Acids Res., 2005, 33.Google Scholar

  • [82] Liu G., Wan Y., Gau V., Zhang J., Wang L., Song S., Fan C., An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets, J. Am. Chem. Soc., 2008, 130, 6820-6825.Google Scholar

  • [83] Wei F., Wang J., Liao W., Zimmermann B.G., Wong D.T., Ho C.-M., Electrochemical detection of low-copy number salivary RNA based on specific signal amplification with a hairpin probe, Nucleic Acids Res., 2008, 36.CrossrefPubMedGoogle Scholar

  • [84] Du H., Disney M.D., Miller B.L., Krauss T.D., Hybridizationbased unquenching of DNA hairpins on Au surfaces: Prototypical “molecular beacon” biosensors, J. Am. Chem. Soc., 2003, 125, 4012-4013.Google Scholar

  • [85] Du H., Strohsahl C.M., Camera J., Miller B.L., Krauss T.D., Sensitivity and specificity of metal surface-immobilized “molecular beacon” biosensors, J. Am. Chem. Soc., 2005, 127, 7932-7940.Google Scholar

  • [86] Zuo X., Song S., Zhang J., Pan D., Wang L., Fan C., A targetresponsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP, J. Am. Chem. Soc., 2007, 129, 1042-1043.Google Scholar

  • [87] Zheng D., Seferos D.S., Giljohann D.A., Patel P.C., Mirkin C.A., Aptamer Nano-flares for Molecular Detection in Living Cells, Nano Lett., 2009, 9, 3258-3261.Google Scholar

  • [88] Pei H., Lu N., Wen Y., Song S., Liu Y., Yan H., Fan C., A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing, Adv. Mater., 2010, 22, 4754-4758.Google Scholar

  • [89] Wen Y., Pei H., Shen Y., Xi J., Lin M., Lu N., Shen X., Li J., Fan C., DNA Nanostructure-based Interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA, Sci. Rep., 2012, 2:867.Google Scholar

  • [90] Lin M., Wang J., Zhou G., Wang J., Wu N., Lu J., Gao J., Chen X., Shi J., Zuo X., Fan C., Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection, Angew. Chem. Int. Edit., 2015, 54, 2151-2155.Google Scholar

  • [91] Pei H., Liang L., Yao G., Li J., Huang Q., Fan C., Reconfigurable Three-Dimensional DNA nanostructures for the construction of intracellular logic sensors, Angew. Chem. Int. Edit., 2012, 51, 9020-9024.Google Scholar

  • [92] Wen Y., Pei H., Wan Y., Su Y., Huang Q., Song S., Fan C., DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors, Anal. Chem., 2011, 83, 7418-7423.CrossrefPubMedGoogle Scholar

  • [93] Pei H., Wan Y., Li J., Hu H., Su Y., Huang Q., Fan C., Regenerable electrochemical immunological sensing at DNA nanostructuredecorated gold surfaces, Chem. Commun., 2011, 47, 6254-6256.Google Scholar

  • [94] Qu X., Zhang H., Chen H., Aldalbahi A., Li L., Tian Y., Weitz D.A., Pei H., Convection-driven pull-down assays in nanoliter droplets using scaffolded aptamers, Anal. Chem., 2017, 89, 3468-3473.Google Scholar

  • [95] Qu X., Yang F., Chen H., Li J., Zhang H., Zhang G., Li L., Wang L., Song S., Tian Y., Pei H., Bubble-Mediated Ultrasensitive Multiplex Detection of Metal Ions in Three-Dimensional DNA nanostructure-encoded microchannels, ACS Appl. Mater. Inter., 2017, 9, 16026-16034.Google Scholar

  • [96] Yan W., Xu L., Xu C., Ma W., Kuang H., Wang L., Kotov N.A., Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity, J. Am. Chem. Soc., 2012, 134, 15114-15121.Google Scholar

  • [97] Li Y., Liu Z., Yu G., Jiang W., Mao C., Self-assembly of moleculelike nanoparticle clusters directed by DNA nanocages, J. Am. Chem. Soc., 2015, 137, 4320-4323.Google Scholar

  • [98] Rosi N.L., Mirkin C.A., Nanostructures in biodiagnostics, Chem. Rev., 2005, 105, 1547-1562.Google Scholar

  • [99] Rosi N.L., Giljohann D.A., Thaxton C.S., Lytton-Jean A.K.R., Han M.S., Mirkin C.A., Oligonucleotide-modified gold nanoparticles for intracellular gene regulation, Science, 2006, 312, 1027-1030.Google Scholar

  • [100] Li L., Hutter T., Finnemore A.S., Huang F.M., Baumberg J.J., Elliott S.R., Steiner U., Mahajan S., Metal oxide nanoparticle mediated enhanced raman scattering and its use in direct monitoring of interfacial chemical reactions, Nano Lett., 2012, 12, 4242-4246.CrossrefPubMedGoogle Scholar

  • [101] Li L., Hutter T., Steiner U., Mahajan S., Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction, Analyst, 2013, 138, 4574-4578.Google Scholar

  • [102] Li L., Steiner U., Mahajan S., Single nanoparticle SERS probes of ion intercalation in metal-oxide electrodes, Nano Lett., 2014, 14, 495-498.CrossrefPubMedGoogle Scholar

  • [103] Li L., Hutter T., Li W.W., Mahajan S., Single nanoparticlebased heteronanojunction as a plasmon ruler for measuring dielectric thin films, J. Phys. Chem. Lett., 2015, 6, 2282-2286.Google Scholar

  • [104] Song S., Liang Z., Zhang J., Wang L., Li G., Fan C., Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis, Angew. Chem. Int. Edit., 2009, 48, 8670-8674.CrossrefGoogle Scholar

  • [105] Li N., Chang C., Pan W., Tang B., A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells, Angew. Chem. Int. Edit., 2012, 51, 7426-7430.Google Scholar

  • [106] Opdahl A., Petrovykh D.Y., Kimura-Suda H., Tarlov M.J., Whitman L.J., Independent control of grafting density and conformation of single-stranded DNA brushes, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 9-14.Google Scholar

  • [107] Pei H., Li F., Wan Y., Wei M., Liu H., Su Y., Chen N., Huang Q., Fan C., Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates, J. Am. Chem. Soc., 2012, 134, 11876-11879.Google Scholar

  • [108] Zhu D., Song P., Shen J., Su S., Chao J., Aldalbahi A., Zhou Z., Song S., Fan C., Zuo X., Tian Y., Wang L., Pei H., PolyA-mediated DNA assembly on gold nanoparticles for thermodynamically favorable and rapid hybridization analysis, Anal. Chem., 2016, 88, 4949-4954.Google Scholar

  • [109] Chen L., Chao J., Qu X., Zhang H., Zhu D., Su S., Aldalbahi A., Wang L., Pei H., Probing cellular molecules with polyA-based engineered aptamer nanobeacon, ACS Appl. Mater. Inter., 2017, 9, 8014-8020.Google Scholar

  • [110] Chen N., Wei M., Sun Y., Li F., Pei H., Li X., Su S., He Y., Wang L., Shi J., Fan C., Huang Q., Self-Assembly of poly-adeninetailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity, Small, 2014, 10, 368-375.Google Scholar

  • [111] Zhao B., Shen J., Chen S., Wang D., Li F., Mathur S., Song S., Fan C., Gold nanostructures encoded by non-fluorescent small molecules in polyA-mediated nanogaps as universal SERS nanotags for recognizing various bioactive molecules, Chem. Sci., 2014, 5, 4460-4466.Google Scholar

  • [112] Zhu Y., Jiang X., Wang H., Wang S., Wang H., Sun B., Su Y., He Y., A poly adenine-mediated assembly strategy for designing surface-enhanced resonance raman scattering substrates in controllable manners, Anal. Chem., 2015, 87, 6631-6638.Google Scholar

  • [113] Qi L., Xiao M., Wang F., Wang L., Ji W., Man T., Aldalbahi A., Naziruddin Khan M., Periyasami G., Rahaman M., Alrohaili A., Qu X., Pei H., Wang C., Li L., Poly-cytosine-mediated nanotags for SERS detection of Hg2+, Nanoscale, 2017, 9, 14184-14191.Google Scholar

  • [114] Zhu D., Chao J., Pei H., Zuo X., Huang Q., Wang L., Huang W., Fan C., Coordination-mediated programmable assembly of unmodified oligonucleotides on plasmonic silver nanoparticles, ACS Appl. Mater. Inter., 2015, 7, 11047-11052.Google Scholar

  • [115] Qi L., Xiao M., Wang X., Wang C., Wang L., Song S., Qu X., Li L., Shi J., Pei H., DNA-encoded raman-active anisotropic nanoparticles for microRNA detection, Anal. Chem., 2017, 89, 9850-9856.Google Scholar

  • [116] Shen J., Tang Q., Li L., Li J., Zuo X., Qu X., Pei H., Wang L., Fan C., Valence-engineering of quantum dots using programmable DNA scaffolds, Angew. Chem. Int. Ed., 2017, 56, 16077.Google Scholar

  • [117] Lo P.K., Karam P., Aldaye F.A., McLaughlin C.K., Hamblin G.D., Cosa G., Sleiman H.F., Loading and selective release of cargo in DNA nanotubes with longitudinal variation, Nat. Chem., 2010, 2, 319-328.Google Scholar

  • [118] Zhao Z., Jacovetty E.L., Liu Y., Yan H., Encapsulation of gold nanoparticles in a DNA origami cage, Angew. Chem. Int. Edit., 2011, 50, 2041-2044.CrossrefGoogle Scholar

  • [119] Walsh A.S., Yin H., Erben C.M., Wood M.J.A., Turberfield A.J., DNA cage delivery to mammalian cells, ACS Nano, 2011, 5, 5427-5432. Google Scholar

  • [120] Li J., Pei H., Zhu B., Liang L., Wei M., He Y., Chen N., Li D., Huang Q., Fan C., Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides, ACS Nano, 2011, 5, 8783-8789.Google Scholar

  • [121] Lee H., Lytton-Jean A.K.R., Chen Y., Love K.T., Park A.I., Karagiannis E.D., Sehgal A., Querbes W., Zurenko C.S., Jayaraman M., Peng C.G., Charisse K., Borodovsky A., Manoharan M., Donahoe J.S., Truelove J., Nahrendorf M., Langer R., Anderson D.G., Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery, Nat. Nanotechnol., 2012, 7, 389-393.Google Scholar

  • [122] Modi S., Swetha M.G., Goswami D., Gupta G.D., Mayor S., Krishnan Y., A DNA nanomachine that maps spatial and temporal pH changes inside living cells, Nat. Nanotechnol., 2009, 4, 325-330.Google Scholar

  • [123] Surana S., Bhat J.M., Koushika S.P., Krishnan Y., An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism, Nat. Commun., 2011, 2.Google Scholar

  • [124] Stevens M.M., George J.H., Exploring and engineering the cell surface interface, Science, 2005, 310, 1135-1138.Google Scholar

  • [125] Chandra R.A., Douglas E.S., Mathies R.A., Bertozzi C.R., Francis M.B., Programmable cell adhesion encoded by DNA hybridization, Angew. Chem. Int. Edit., 2006, 45, 896-901.Google Scholar

  • [126] Bokel C., Brown N.H., Integrins in development: Moving on, responding to, and sticking to the extracellular matrix, Dev. Cell, 2002, 3, 311-321.Google Scholar

  • [127] Qu X., Wang S., Ge Z., Wang J., Yao G., Li J., Zuo X., Shi J., Song S., Wang L., Li L., Pei H., Fan C., Programming cell adhesion for on-chip sequential boolean logic functions, J. Am. Chem. Soc., 2017, 139, 10176-10179.Google Scholar

  • [128] Douglas E.S., Chandra R.A., Bertozzi C.R., Mathies R.A., Francis M.B., Self-assembled cellular microarrays patterned using DNA barcodes, Lab Chip, 2007, 7, 1442-1448.Google Scholar

  • [129] Toriello N.M., Douglas E.S., Thaitrong N., Hsiao S.C., Francis M.B., Bertozzi C.R., Mathies R.A., Integrated microfluidic bioprocessor for single-cell gene expression analysis, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 20173-20178.Google Scholar

  • [130] Hsiao S.C., Crow A.K., Lam W.A., Bertozzi C.R., Fletcher D.A., Francis M.B., DNA-coated AFM cantilevers for the investigation of cell adhesion and the patterning of live cells, Angew. Chem. Int. Edit., 2008, 47, 8473-8477.Google Scholar

  • [131] Hsiao S.C., Shum B.J., Onoe H., Douglas E.S., Gartner Z.J., Mathies R.A., Bertozzi C.R., Francis M.B., Direct cell surface modification with DNA for the capture of primary cells and the investigation of myotube formation on defined patterns, Langmuir, 2009, 25, 6985-6991.CrossrefGoogle Scholar

  • [132] Gartner Z.J., Bertozzi C.R., Programmed assembly of 3-dimensional microtissues with defined cellular connectivity, Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 4606-4610.Google Scholar

  • [133] Coyle M.P., Xu Q., Chiang S., Francis M.B., Groves J.T., DNA-mediated assembly of protein heterodimers on membrane surfaces, J. Am. Chem. Soc., 2013, 135, 5012-5016.Google Scholar

  • [134] Langecker M., Arnaut V., Martin T.G., List J., Renner S., Mayer M., Dietz H., Simmel F.C., Synthetic lipid membrane channels formed by designed DNA nanostructures, Science, 2012, 338, 932-936.Google Scholar

About the article

Received: 2017-12-25

Accepted: 2018-03-12

Published Online: 2018-05-17

Citation Information: Nanofabrication, Volume 4, Issue 1, Pages 1–16, ISSN (Online) 2299-680X, DOI: https://doi.org/10.1515/nanofab-2018-0001.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Li-Xing YU, Rui ZHAI, Xiao-Yun GONG, Jie XIE, Ze-Jian HUANG, Mei-Ying LIU, You JIANG, Xin-Hua DAI, Xiang FANG, and Xiao-Ping YU
Chinese Journal of Analytical Chemistry, 2019, Volume 47, Number 11, Page 1742
Mingshu Xiao, Wei Lai, Tiantian Man, Binbin Chang, Li Li, Arun Richard Chandrasekaran, and Hao Pei
Chemical Reviews, 2019
Yuwei Su, Dan Li, Bingyi Liu, Mingshu Xiao, Fei Wang, Li Li, Xueli Zhang, and Hao Pei
ChemPlusChem, 2019, Volume 84, Number 5, Page 512
Megan E. Kizer, Robert J. Linhardt, Arun Richard Chandrasekaran, and Xing Wang
Small, 2019, Volume 15, Number 26, Page 1805386

Comments (0)

Please log in or register to comment.
Log in