Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Open Access
See all formats and pricing
More options …

Functional Nanofibers with Multiscale Structure by Electrospinning

Ran Chen
  • Corresponding author
  • Key Laboratary of Fluid Power and Mechatronic Systems, Zhejiang University, Zheda Rd. 38, Hangzhou, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Junfeng Liu / Zeyong Sun / Dong Chen
Published Online: 2018-05-30 | DOI: https://doi.org/10.1515/nanofab-2018-0002


Electrospinning can produce nanofibers with extremely high surface-to-volume ratio and well tunable properties. The technique has been widely used in different disciplines. To fabricate fibers with required properties, parameters of fabrication should be well controlled and adjusted according to specific applications. Modification of electrospinning devices to align fibers in highly ordered architectures could improve their functions. Enhanced efficiency have also been obtained through the upscaling modification of spinnerets. With the outstanding efficiency, electrospinning has exhibited huge potentials to construct various nanostructures, such as artificial vessel, membrane for desalination and so on.

Keywords : Electrospinnig; Parameter control; Fiber alignment; Upscaling


  • [1] Mei L., Wang Y., Tong A., Guo G., Facile electrospinning of an efficient drug delivery system, Expert Opin. Drug Deliv., 2016, 13 741-753.Google Scholar

  • [2] Yang Q., Sun T., Yu J., Ma J., Electrospinning of GeO2-C fibers and electrochemical application in lithium-ion batteries, Chinese Chem. Lett., 2016, 27 412-416.Google Scholar

  • [3] Lee E.M., Gwon S.Y., Son Y.A., Kim S.H., Fast ethylamine gas sensing based on intermolecular charge-transfer complexation, Chinese Chem. Lett., 2012, 23 484-487.Google Scholar

  • [4] Zhao Y.-Q., Wang H.-Y., Qi L., Gao G.-T., Ma S.-H., “Soggy sand” polymer composite nanofiber membrane electrolytes for lithium ion batteries, Chinese Chem. Lett., 2013, 24 975-978.Google Scholar

  • [5] Liu J., Shen J., Li M., Guo L., A high-efficient amperometric hydrazine sensor based on novel electrospun CoFe2O4 spinel nanofibers, Chinese Chem. Lett., 2015, 26 1478-1484.Google Scholar

  • [6] Hua K.-Y., Deng C.-M., He C., Shi L.-Q., Zhu D.-F., He Q.-G., Cheng J.-G., Organic semiconductors-coated polyacrylonitrile (PAN) electrospun nanofibrous mats for highly sensitive chemosensors via evanescent-wave guiding effect, Chinese Chem. Lett., 2013, 24 643-646.Google Scholar

  • [7] Guo S.J., Bai J., Liang H.O., Li C.P., The controllable preparation of electrospun carbon fibers supported Pd nanoparticles catalyst and its application in Suzuki and Heck reactions, Chinese Chem. Lett., 2016, 27 459-463.Google Scholar

  • [8] Gao Q., Meguro H., Okamoto S., Kimura M., Flexible Tactile Sensor Using the Reversible Deformation of Poly(3- hexylthiophene) Nanofiber Assemblies, Langmuir., 2012, 28 17593-17596.PubMedGoogle Scholar

  • [9] Wang Y.R., Zheng J.M., Ren G.Y., Zhang P.H., Xu C., A flexible piezoelectric force sensor based on PVDF fabrics, Smart Mater. Struct., 2011, 20 045009.Google Scholar

  • [10] Wang X., Kim Y., Drew C., Ku B., Kumar J., Samuelson L.A., Electrostatic Assembly of Conjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors, Nano Lett., 2004, 4 331-334.Google Scholar

  • [11] Liu H., Kameoka J., Czaplewski D.A., Craighead H.G., Polymeric nanowire chemical sensor, Nano Lett., 2004, 4 671-675.CrossrefGoogle Scholar

  • [12] Wang X.Y., Drew C., Lee S.H., Senecal K.J., Kumar J., Samuelson L.A., Sarnuelson L.A., Samuelson L.A., Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors, Nano Lett., 2002, 2 1273-1275.CrossrefGoogle Scholar

  • [13] Ma Z., Kotaki M., Inai R., Ramakrishna S., Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds, Tissue Eng., 2005, 11 101-109.CrossrefGoogle Scholar

  • [14] Riboldi S.A., Sampaolesi M., Neuenschwander P., Cossu G., Mantero S., Electrospun degradable polyesterurethane membranes: Potential scaffolds for skeletal muscle tissue engineering, Biomaterials., 2005, 26 4606-4615.CrossrefGoogle Scholar

  • [15] Khil M.S., Bhattarai S.R., Kim H.Y., Kim S.Z., Lee K.H., Novel fabricated matrix via electrospinning for tissue engineering, J. Biomed. Mater. Res. - Part B Appl. Biomater., 2005, 72 117-124.Google Scholar

  • [16] Yang F., Murugan R., Wang S., Ramakrishna S., Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials., 2005, 26 2603-2610.CrossrefGoogle Scholar

  • [17] Ding B., Kim J., Miyazaki Y., Shiratori S., Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection, Sensors and Actuators, B Chem., 2004, 101 373-380.Google Scholar

  • [18] Ma Z., Kotaki M., Yong T., He W., Ramakrishna S., Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering, Biomaterials., 2005, 26 2527-2536.CrossrefGoogle Scholar

  • [19] Chen R., Ruan X., Liu W., Stefanini C., A reliable and fast hydrogen gas leakage detector based on irreversible cracking of decorated palladium nanolayer upon aligned polymer fibers, Int. J. Hydrogen Energy., 2015, 40 746-751.Google Scholar

  • [20] Liang D., Hsiao B.S., Chu B., Functional electrospun nanofibrous scaffolds for biomedical applications, Adv. Drug Deliv. Rev., 2007, 59 1392-1412.Google Scholar

  • [21] Agarwal S., Wendorff J.H., Greiner A., Use of electrospinning technique for biomedical applications, Polymer (Guildf)., 2008, 49 5603-5621.Google Scholar

  • [22] Su C.I., Shih J.H., Huang M.S., Wang C.M., Shih W.C., Liu Y. sheng, A study of hydrophobic electrospun membrane applied in seawater desalination by membrane distillation, Fibers Polym., 2012, 13 698-702.Google Scholar

  • [23] Ahmed F.E., Lalia B.S., Hashaikeh R., A review on electrospinning for membrane fabrication: Challenges and applications, Desalination., 2015, 356 15-30.Google Scholar

  • [24] Yin Z., Chen X., Song H. xin, Hu J. jie, Tang Q. mei, Zhu T., Shen W. liang, Chen J. lin, Liu H., Heng B.C., et al., Electrospun scaffolds for multiple tissues regeneration invivo through topography dependent induction of lineage specific differentiation, Biomaterials., 2015, 44 173-185.Google Scholar

  • [25] Ye H.M., Hong L.T., Gao Y., Xu J., Isomorphism in ternary complex: Poly(ethylene oxide), urea and thiourea, Chinese Chem. Lett., 2017, 28 888-892.Google Scholar

  • [26] Wang Q., Xu J., Jin H., Zheng W., Zhang X., Huang Y., Qian Z., Artificial periosteum in bone defect repair-A review, Chinese Chem. Lett., 2017, 28 1801-1807.Google Scholar

  • [27] Zong X., Kim K., Fang D., Ran S., Hsiao B.S., Chu B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer (Guildf)., 2002, 43 4403-4412.CrossrefGoogle Scholar

  • [28] Liu H., Hsieh Y.-L., Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate, J. Polym. Sci. Part B Polym. Phys., 2002, 40 2119-2129.CrossrefGoogle Scholar

  • [29] Huang Y., Huang Q.L., Liu H., Zhang C.X., You Y.W., Li N.N., Xiao C.F., Preparation, characterization, and applications of electrospun ultrafine fibrous PTFE porous membranes, J. Memb. Sci., 2017, 523 317-326.Google Scholar

  • [30] Li D., Xia Y., Electrospinning of nanofibers: Reinventing the wheel?, Adv. Mater., 2004, 16 1151-1170.Google Scholar

  • [31] Hohman M.M., Shin M., Rutledge G., Brenner M.P., Electrospinning and electrically forced jets. I. Stability theory, Phys. Fluids., 2001, 13 2201-2220.CrossrefGoogle Scholar

  • [32] Yarin A.L., Koombhongse S., Reneker D.H., Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, J. Appl. Phys., 2001, 90 4836-4846.CrossrefGoogle Scholar

  • [33] Pedicini A., Farris R.J., Mechanical behavior of electrospun polyurethane, Polymer (Guildf)., 2003, 44 6857-6862.CrossrefGoogle Scholar

  • [34] Demir M.., Yilgor I., Yilgor E., Erman B., Electrospinning of polyurethane fibers, Polymer (Guildf)., 2002, 43 3303-3309.CrossrefGoogle Scholar

  • [35] Zussman E., Burman M., Tensile deformation of electrospun nylon‐6, 6 nanofibers, J. Polym. …., 2006, 44 1482-1489.Google Scholar

  • [36] Bazbouz M.B., Stylios G.K., Alignment and Optimization of Nylon 6 Nanofibers by Electrospinning, J. Appl. Polym. Sci., 2007, 107 3023-3032.Google Scholar

  • [37] Ding B., Kim H.-Y., Lee S.-C., Shao C.-L., Lee D.-R., Park S.-J., Kwag G.-B., Choi K.-J., Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method, J. Polym. Sci. Part B Polym. Phys., 2002, 40 1261-1268.Google Scholar

  • [38] Lowery J.L., Datta N., Rutledge G.C., Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ɛ-caprolactone) fibrous mats, Biomaterials., 2010, 31 491-504.CrossrefGoogle Scholar

  • [39] Yang F., Wolke J.G.C., Jansen J.A., Biomimetic calcium phosphate coating on electrospun poly(ɛ-caprolactone) scaffolds for bone tissue engineering, Chem. Eng. J., 2008, 137 154-161.Google Scholar

  • [40] Ma Z., He W., Yong T., Ramakrishna S., Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation, Tissue Eng., 2005, 11 1149-58.CrossrefPubMedGoogle Scholar

  • [41] Pham Q.P., Sharma U., Mikos A.G., Electrospun Poly(ε- caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration, Biomacromolecules., 2006, 7 2796-2805.CrossrefGoogle Scholar

  • [42] Matsumoto H., Ishiguro T., Konosu Y., Minagawa M., Tanioka A., Richau K., Kratz K., Lendlein A., Shape-memory properties of electrospun non-woven fabrics prepared from degradable polyesterurethanes containing poly(ω-pentadecalactone) hard segments, Eur. Polym. J., 2012, 48 1866-1874.CrossrefGoogle Scholar

  • [43] Caracciolo P.C., Thomas V., Vohra Y.K., Buffa F., Abraham G.A., Electrospinning of novel biodegradable poly(ester urethane) s and poly(ester urethane urea)s for soft tissue-engineering applications, J. Mater. Sci. Mater. Med., 2009, 20 2129-2137.CrossrefGoogle Scholar

  • [44] Krynauw H., Bruchmuller L., Bezuidenhout D., Zilla P., Franz T., Degradation-induced changes of mechanical properties of an electro-spun polyester-urethane scaffold for soft tissue regeneration, J. Biomed. Mater. Res. Part B Appl. Biomater., 2011, 99B 359-368.Google Scholar

  • [45] Henry J.A., Simonet M., Pandit A., Neuenschwander P., Characterization of a slowly degrading biodegradable polyesterurethane for tissue engineering scaffolds, J. Biomed. Mater. Res. Part A., 2007, 82A 669-679.CrossrefGoogle Scholar

  • [46] Liu X., Lin T., Gao Y., Xu Z., Huang C., Yao G., Jiang L., Tang Y., Wang X., Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing, J. Biomed. Mater. Res. Part B Appl. Biomater., 2012, 100B 1556-1565.CrossrefGoogle Scholar

  • [47] Wang H.B., Mullins M.E., Cregg J.M., Hurtado A., Oudega M., Trombley M.T., Gilbert R.J., Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications, J. Neural Eng., 2009, 6 016001.CrossrefGoogle Scholar

  • [48] Mei F., Zhong J., Yang X., Ouyang X., Zhang S., Hu X., Ma Q., Lu J., Ryu S., Deng X., Improved Biological Characteristics of Poly(L-Lactic Acid) Electrospun Membrane by Incorporation of Multiwalled Carbon Nanotubes/Hydroxyapatite Nanoparticles, Biomacromolecules., 2007, 8 3729-3735.Google Scholar

  • [49] He C., Huang Z., Han X., Liu L., Zhang H., Chen L., Coaxial Electrospun Poly(L-Lactic Acid) Ultrafine Fibers for Sustained Drug Delivery, J. Macromol. Sci. Part B., 2006, 45 515-524.Google Scholar

  • [50] Yang F., Xu C.Y., Kotaki M., Wang S., Ramakrishna S., Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold, J. Biomater. Sci. Polym. Ed., 2004, 15 1483-1497.Google Scholar

  • [51] Fong H., Reneker D.H., Elastomeric nanofibers of styrenebutadiene- styrene triblock copolymer, J. Polym. Sci. Part B Polym. Phys., 1999, 37 3488-3493.Google Scholar

  • [52] Doshi J., Reneker D.H., Electrospinning process and applications of electrospun fibers, in: Conf. Rec. 1993 IEEE Ind. Appl. Conf. Twenty-Eighth IAS Annu. Meet., IEEE, 1993: pp. 1698-1703.Google Scholar

  • [53] Bognitzki M., Czado W., Frese T., Schaper A., Hellwig M., Steinhart M., Greiner A., Wendorff J.H., Nanostructured Fibers via Electrospinning, Adv. Mater., 2001, 13 70-72.Google Scholar

  • [54] Fong H., Chun I., Reneker D.., Beaded nanofibers formed during electrospinning, Polymer (Guildf)., 1999, 40 4585-4592.CrossrefGoogle Scholar

  • [55] Deitzel J.., Kleinmeyer J., Harris D., Beck Tan N.., The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer (Guildf)., 2001, 42 261-272.CrossrefGoogle Scholar

  • [56] Kong L., Ziegler G.R., Quantitative relationship between electrospinning parameters and starch fiber diameter, Carbohydr. Polym., 2013, 92 1416-1422.PubMedGoogle Scholar

  • [57] Sener A.G., Altay A.S., Altay F., Effect of voltage on morphology of electrospun nanofibers, in: 7th Int. Conf. Electr. Electron. Eng., 2011: pp. I324-I328.Google Scholar

  • [58] De Vrieze S., Van Camp T., Nelvig A., Hagstrom B., Westbroek P., De Clerck K., The effect of temperature and humidity on electrospinning, J. Mater. Sci., 2009, 44 1357-1362.CrossrefGoogle Scholar

  • [59] Megelski S., Stephens J.S., Chase D.B., Rabolt J.F., Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers, Macromolecules., 2002, 35 8456-8466.Google Scholar

  • [60] Casper C.L., Stephens J.S., Controlling Surface Morphology of Electrospun Polysterene Fibers: Effect of Humidity and Molecular Weight in Electrospinning Process, Macromolecules., 2004, 37 573-578.Google Scholar

  • [61] Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater., 2003, 15 353-389.Google Scholar

  • [62] Huang Y., Directed Assembly of One-Dimensional Nanostructures into Functional Networks, Science., 2001, 291 630-633.Google Scholar

  • [63] Dersch R., Liu T., Schaper A.K., Greiner A., Wendorff J.H., Electrospun nanofibers: Internal structure and intrinsic orientation, J. Polym. Sci. Part A Polym. Chem., 2003, 41 545-553.CrossrefGoogle Scholar

  • [64] Li D., Wang Y., Xia Y., Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Lett., 2003, 3 1167-1171.CrossrefGoogle Scholar

  • [65] Li D., Wang Y., Xia Y., Li D., Wang Y., Wang Y., Xia Y., Xia Y., Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films, Adv. Mater., 2004, 16 361-366.Google Scholar

  • [66] Yang D., Lu B., Zhao Y., Jiang X., Fabrication of aligned fibrous arrays by magnetic electrospinning, Adv. Mater., 2007, 19 3702-3706.Google Scholar

  • [67] Mathew G., Hong J.P., Rhee J.M., Lee H.S., Nah C., Preparation and characterization of properties of electrospun poly(butylene terephthalate) nanofibers filled with carbon nanotubes, Polym. Test., 2005, 24 712-717.Google Scholar

  • [68] Sundaray B., Subramanian V., Natarajan T.S., Xiang R.Z., Chang C.C., Fann W.S., Electrospinning of continuous aligned polymer fibers, Appl. Phys. Lett., 2004, 84 1222-1224.CrossrefGoogle Scholar

  • [69] Katta P., Alessandro M., Ramsier R.D., Chase G.G., Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector, Nano Lett., 2004, 4 2215-2218.Google Scholar

  • [70] Fennessey S.F., Farris R.J., Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns, Polymer (Guildf)., 2004, 45 4217-4225.CrossrefGoogle Scholar

  • [71] Bhattarai N., Edmondson D., Veiseh O., Matsen F.A., Zhang M., Electrospun chitosan-based nanofibers and their cellular compatibility, Biomaterials., 2005, 26 6176-6184.CrossrefGoogle Scholar

  • [72] Xu C.Y., Inai R., Kotaki M., Ramakrishna S., Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering, Biomaterials., 2004, 25 877-886.CrossrefPubMedGoogle Scholar

  • [73] Theron A., Zussman E., Yarin A.L., Electrostatic field-assisted alignment of electrospun nanofibres, Nanotechnology., 2001, 12 384-390.CrossrefGoogle Scholar

  • [74] Chang C., Limkrailassiri K., Lin L., Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns, Appl. Phys. Lett., 2008, 93 123111.Google Scholar

  • [75] Sun D., Chang C., Li S., Lin L., Near-Field Electrospinning, Nano Lett., 2006, 6 839-842.CrossrefPubMedGoogle Scholar

  • [76] Bisht G.S., Canton G., Mirsepassi A., Kulinsky L., Oh S., Dunn-Rankin D., Madou M.J., Controlled Continuous Patterning of Polymeric Nanofibers on Three-Dimensional Substrates Using Low-Voltage Near-Field Electrospinning, Nano Lett., 2011, 11 1831-1837.CrossrefPubMedGoogle Scholar

  • [77] Zhang Y., Huang Z., Xu X., Lim C.T., Ramakrishna S., Preparation of Core−Shell Structured PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning, Chem. Mater., 2004, 16 3406-3409.CrossrefGoogle Scholar

  • [78] Huang Z.M., Zhang Y., Ramakrishna S., Double-layered composite nanofibers and their mechanical performance, J. Polym. Sci. Part B Polym. Phys., 2005, 43 2852-2861.CrossrefGoogle Scholar

  • [79] He C., Huang Z., Han X., Liu L., Zhang H., Chen L., Coaxial Electrospun Poly(L‐Lactic Acid) Ultrafine Fibers for Sustained Drug Delivery, J. Macromol. Sci. Part B., 2006, 45 515-524.Google Scholar

  • [80] Sun Z., Zussman E., Yarin A.L., Wendorff J.H., Greiner A., Compound Core-Shell Polymer Nanofibers by Co-Electrospinning, Adv. Mater., 2003, 15 1929-1932.Google Scholar

  • [81] Greiner A., Wendorff J.H., Yarin A.L., Zussman E., Biohybrid nanosystems with polymer nanofibers and nanotubes, Appl. Microbiol. Biotechnol., 2006, 71 387-393.Google Scholar

  • [82] Chen R., Huang C., Ke Q., He C., Wang H., Mo X., Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications, Colloids Surfaces B Biointerfaces., 2010, 79 315-325.PubMedGoogle Scholar

  • [83] Yu D.-G., Yu J.-H., Chen L., Williams G.R., Wang X., Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers, Carbohydr. Polym., 2012, 90 1016-1023.PubMedGoogle Scholar

  • [84] Sun B., Duan B., Yuan X., Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning, J. Appl. Polym. Sci., 2006, 102 39-45.CrossrefGoogle Scholar

  • [85] Zhao P., Jiang H., Pan H., Zhu K., Chen W., Biodegradable fibrous scaffolds composed of gelatin coated poly(ε- caprolactone) prepared by coaxial electrospinning, J. Biomed. Mater. Res. Part A., 2007, 83A 372-382.Google Scholar

  • [86] Pakravan M., Heuzey M.-C., Ajji A., Core-Shell Structured PEO-Chitosan Nanofibers by Coaxial Electrospinning, Biomacromolecules., 2012, 13 412-421.CrossrefPubMedGoogle Scholar

  • [87] Han D., Steckl A.J., Superhydrophobic and Oleophobic Fibers by Coaxial Electrospinning, Langmuir., 2009, 25 9454-9462.CrossrefGoogle Scholar

  • [88] Jiang H., Hu Y., Li Y., Zhao P., Zhu K., Chen W., A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents, J. Control. Release., 2005, 108 237-243.Google Scholar

  • [89] Zhang Y., Huang Z.-M., Xu X., Lim C.T., Ramakrishna S., Preparation of Core−Shell Structured PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning, Chem. Mater., 2004, 16 3406-3409.CrossrefGoogle Scholar

  • [90] Zhang Y.Z., Wang X., Feng Y., Li J., Lim C.T., Ramakrishna S., Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(ε-caprolactone) Nanofibers for Sustained Release, Biomacromolecules., 2006, 7 1049-1057.CrossrefPubMedGoogle Scholar

  • [91] Loscertales I.G., Barrero A., Marquez M., Spretz R., Velarde- Ortiz R., Larsen G., Electrically Forced Coaxial Nanojets for One-Step Hollow Nanofiber Design, J. Am. Chem. Soc., 2004, 126 5376-5377.Google Scholar

  • [92] Li D., McCann J.T., Xia Y., Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces, Small., 2004, 1 83-86.Google Scholar

  • [93] Li D., McCann J.T., Xia Y., Marquez M., Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes, J. Am. Ceram. Soc., 2006, 89 1861-1869.Google Scholar

  • [94] Li D., Xia Y., Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning, Nano Lett., 2004, 4 933-938.CrossrefGoogle Scholar

  • [95] Varesano A., Carletto R.A., Mazzuchetti G., Experimental investigations on the multi-jet electrospinning process, J. Mater. Process. Technol., 2009, 209 5178-5185.Google Scholar

  • [96] Ding B., Kimura E., Sato T., Fujita S., Shiratori S., Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning, Polymer (Guildf)., 2004, 45 1895-1902.CrossrefGoogle Scholar

  • [97] Kidoaki S., Kwon I.K., Matsuda T., Mesoscopic spatial designs of nano- and microfiber meshes for tissueengineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques, Biomaterials., 2005, 26 37-46.Google Scholar

  • [98] Kim I.G., Lee J.-H., Unnithan A.R., Park C.-H., Kim C.S., A comprehensive electric field analysis of cylinder-type multi-nozzle electrospinning system for mass production of nanofibers, J. Ind. Eng. Chem., 2015, 31 251-256.Google Scholar

  • [99] Yarin A.L., Zussman E., Upward needleless electrospinning of multiple nanofibers, Polymer (Guildf)., 2004, 45 2977-2980.Google Scholar

  • [100] Niu H., Lin T., Wang X., Needleless electrospinning. I. A comparison of cylinder and disk nozzles, J. Appl. Polym. Sci., 2009, 114 3524-3530.Google Scholar

  • [101] Huang C., Niu H., Wu J., Ke Q., Mo X., Lin T., Needleless electrospinning of polystyrene fibers with an oriented surface line texture, J. Nanomater., 2012, 2012.Google Scholar

  • [102] Bjorge D., Daels N., De Vrieze S., Dejans P., Van Camp T., Audenaert W., Hogie J., Westbroek P., De Clerck K., Van Hulle S.W.H., Performance assessment of electrospun nanofibers for filter applications, Desalination., 2009, 249 942-948.Google Scholar

  • [103] Choi H.J., Kim S.B., Kim S.H., Lee M.H., Preparation of electrospun polyurethane filter media and their collection mechanisms for ultrafine particles, J. Air Waste Manag. Assoc., 2014, 64 322-329.Google Scholar

  • [104] Xu J., Liu C., Hsu P.C., Liu K., Zhang R., Liu Y., Cui Y., Roll-to-Roll Transfer of Electrospun Nanofiber Film for High-Efficiency Transparent Air Filter, Nano Lett., 2016, 16 1270-1275.PubMedCrossrefGoogle Scholar

  • [105] Yun K.M., Hogan C.J., Matsubayashi Y., Kawabe M., Iskandar F., Okuyama K., Nanoparticle filtration by electrospun polymer fibers, Chem. Eng. Sci., 2007, 62 4751-4759.Google Scholar

  • [106] Lee S. Bin, Cho H.J., Ha Y.M., Kim S.J., Chung B.J., Son W.K., Kang K.S., Jung Y.C., Park K., Lee J.S., Enhancing the durability of filtration the ultrafine aerosol by electrospun polymer filter containing quaternary ammonium moiety, Polym. (United Kingdom)., 2017, 121 211-216.Google Scholar

  • [107] Liu S., Kok M., Kim Y., Barton J.L., Brushett F.R., Gostick J., Evaluation of Electrospun Fibrous Mats Targeted for Use as Flow Battery Electrodes, J. Electrochem. Soc., 2017, 164 A2038-A2048.Google Scholar

  • [108] Zhu Y., Han X., Xu Y., Liu Y., Zheng S., Xu K., Hu L., Wang C., Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode, ACS Nano., 2013, 7 6378-6386.Google Scholar

  • [109] Di Blasi A., Busaccaa C., Di Blasia O., Briguglio N., Squadrito G., Antonuccia V., Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4nanoparticles for vanadium redox flow battery application, Appl. Energy., 2017, 190 165-171.Google Scholar

  • [110] Hwang T.H., Lee Y.M., Kong B.S., Seo J.S., Choi J.W., Electrospun core-shell fibers for robust silicon nanoparticlebased lithium ion battery anodes, Nano Lett., 2012, 12 802-807.CrossrefGoogle Scholar

  • [111] Choi S.W., Jo S.M., Lee W.S., Kim Y.R., An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications, Adv. Mater., 2003, 15 2027-2032.Google Scholar

  • [112] Cui J., Zhan T.G., Zhang K. Da, Chen D., The recent advances in constructing designed electrode in lithium metal batteries, Chinese Chem. Lett., 2017, 28 2171-2179.Google Scholar

  • [113] Wade R.J., Burdick J.A., Engineering ECM signals into biomaterials, Mater. Today., 2012, 15 454-459.Google Scholar

  • [114] Mandal D., Yoon S., Kim K.J., Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor, Macromol. Rapid Commun., 2011, 32 831-837.Google Scholar

  • [115] Persano L., Dagdeviren C., Su Y., Zhang Y., Girardo S., Pisignano D., Huang Y., Rogers J.A., High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene), Nat. Commun., 2013, 4 1633.Google Scholar

  • [116] Lee S., Reuveny A., Reeder J., Lee S., Jin H., Liu Q., Yokota T., Sekitani T., Isoyama T., Abe Y., et al., A transparent bendinginsensitive pressure sensor, Nat. Nanotechnol., 2016, 1-8.Google Scholar

  • [117] Bai X., Ji H., Gao P., Zhang Y., Sun X., Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors, Sensors and Actuators, B Chem., 2014, 193 100-106.Google Scholar

  • [118] Zhang L., Wang X., Zhao Y., Zhu Z., Fong H., Electrospun carbon nano-felt surface-attached with Pd nanoparticles for hydrogen sensing application, Mater. Lett., 2012, 68 133-136.CrossrefGoogle Scholar

  • [119] Song Y., Chan Y.K., Ma Q., Liu Z., Shum H.C., All-Aqueous Electrosprayed Emulsion for Templated Fabrication of Cytocompatible Microcapsules, ACS Appl. Mater. Interfaces., 2015, 7 13925-13933.Google Scholar

  • [120] Menini R., Farzaneh M., Production of superhydrophobic polymer fibers with embedded particles using the electrospinning technique, Polym. Int., 2008, 57 77-84.Google Scholar

  • [121] Diaz J.E., Barrero A., Marquez M., Loscertales I.G., Controlled Encapsulation of Hydrophobic Liquids in Hydrophilic Polymer Nanofibers by Co-electrospinning, Adv. Funct. Mater., 2006, 16 2110-2116.Google Scholar

  • [122] Salinas C., Kisailus D., Fracture Mitigation Strategies in Gastropod Shells, JOM., 2013, 65 473-480.Google Scholar

  • [123] Weaver J.C., Milliron G.W., Miserez a., Evans-Lutterodt K., Herrera S., Gallana I., Mershon W.J., Swanson B., Zavattieri P., DiMasi E., et al., The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer, Science., 2012, 336 1275-1280.Google Scholar

About the article

Received: 2017-12-21

Accepted: 2018-03-19

Published Online: 2018-05-30

Citation Information: Nanofabrication, Volume 4, Issue 1, Pages 17–31, ISSN (Online) 2299-680X, DOI: https://doi.org/10.1515/nanofab-2018-0002.

Export Citation

© 2018 Dong Chen, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Yangmei Ren, Lan Mei, Yingchun Gu, Na Zhao, Yuelong Wang, Rangrang Fan, Aiping Tong, Haifeng Chen, Hui Yang, Bo Han, and Gang Guo
ACS Sustainable Chemistry & Engineering, 2019
Luiza A. Mercante, Rafaela S. Andre, Luiz H. C. Mattoso, and Daniel S. Correa
ACS Applied Nano Materials, 2019, Volume 2, Number 7, Page 4026
Tejas V. Shah and Dilip V. Vasava
e-Polymers, 2019, Volume 19, Number 1, Page 385
Ran Chen, Junfeng Liu, Chenjing Yang, David A. Weitz, Haonan He, Dewen Li, Dong Chen, Kai Liu, and Hao Bai
ACS Applied Materials & Interfaces, 2019, Volume 11, Number 26, Page 23616
Ruby Singh, Farhan Ahmed, Poulomi Polley, and Jyotsnendu Giri
ACS Applied Materials & Interfaces, 2018

Comments (0)

Please log in or register to comment.
Log in