Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanofabrication

Open Access
Online
ISSN
2299-680X
See all formats and pricing
More options …

Recent Advances in Novel DNA Guiding Nanofabrication and Nanotechnology

Zhiguang Suo / Jingqi Chen / Ziheng Hu / Yihao Liu / Feifei Xing / Lingyan Feng
Published Online: 2018-11-21 | DOI: https://doi.org/10.1515/nanofab-2018-0003

Abstract

DNA as life’s genetic material has been widely investigated around the world. In recent years, with the fiery researches on nanomaterials, it also plays an important role in the development of material science due to its extraordinary molecular recognition capability and prominent structural features. In this mini review, we mainly overview the recent progresses of DNA guiding self-assembled nanostructures and nanofabrication. Typical DNA tile-based assembly and DNA origami nanotechnologies are presented, utilizing the recent 3D topology methods to fabricate multidimensional structures with unique properties. Then the site-specific nanomaterials synthesis and nano-DNA recognition on different DNA scaffolds/templates are demonstrated with excellent addressability, biocompatibility and structural programmability. Various nanomaterials, such as metals, carbon family materials, quantum dots, metal-organic frameworks, and DNA-based liquid crystals are briefly summarized. Finally, the present limitation and future promising development directions are discussed in conclusion and perspective. We wish this review would provide useful information toward the broader scientific interests in DNA nanotechnology.

Keywords: DNA; nanofabrication; nanotechnology; nanomaterials; biomedicine

References

  • [1] Watson JD, Crick FH. Genetical implications of the structure of deoxyribonucleic acid. Nature. 1953,171(4361):964-7.Google Scholar

  • [2] Wang AHJ, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, et al. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979,282:680-6.Google Scholar

  • [3] Felsenfeld G, Davies DR, Rich A. Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc., 1957,79(8):2023-4.Google Scholar

  • [4] Gehring K, Leroy JL, Gueron M. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature. 1993,363(6429):561-5.Google Scholar

  • [5] Kazuo K, Yoshihiro K, Minoru N, Ryozi U. An Electron Microscope Study on Fine Metal Particles Prepared by Evaporation in Argon Gas at Low Pressure. Japanese Journal of Applied Physics. 1963,2(11):702-713.Google Scholar

  • [6] Gleiter H. Nanocrystalline materials. Prog Mater Sci. 1989,33(4):223-315.Google Scholar

  • [7] Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature. 2001,409(6816):66-9.Google Scholar

  • [8] Feng L, Huang Z, Ren J, Qu X. Toward site-specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds. Nucleic Acids Res. 2012,40(16):e122-9.Google Scholar

  • [9] Kallenbach NR, Ma R-I, Seeman NC. An immobile nucleic acid junction constructed from oligonucleotides. Nature. 1983,305:829-831.Google Scholar

  • [10] Fu TJ, Seeman NC. DNA double-crossover molecules[J]. Biochemistry-Us. 1993,32(13):3211-20.Google Scholar

  • [11] Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science. 2003,301(5641):1882-4.Google Scholar

  • [12] Liu D, Wang MS, Deng ZX, Walulu R, Mao CD. Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc., 2004,126(8):2324-5.Google Scholar

  • [13] He Y, Chen Y, Liu HP, Ribbe AE, Mao CD. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc.,2005,127(35):12202-3.Google Scholar

  • [14] He Y, Tian Y, Chen Y, Deng ZX, Ribbe AE, Mao CD. Sequence symmetry as a tool for designing DNA nanostructures. Angew Chem Int Edit. 2005,44(41):6694-6.Google Scholar

  • [15] Zhang C, Su M, He Y, Zhao X, Fang P-a, Ribbe AE, et al. Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc Natl Acad Sci USA. 2008,105(31):10665-9.Google Scholar

  • [16] He Y, Tian Y, Ribbe AE, Mao C. Highly connected two-dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc., 2006,128(50):15978-9.Google Scholar

  • [17] Li M, Yu J, Li J, Ben Wang E, Wang G, Mao C. Self-assembly of DNA double multi-arm junctions (DMaJs). Rsc Advances. 2016,6(80):76355.Google Scholar

  • [18] Zhang F, Jiang S, Li W, Hunt A, Liu Y, Yan H. Self-Assembly of Complex DNA Tessellations by Using Low-Symmetry Multi-arm DNA Tiles. Angew Chem Int Ed. 2016,55(31):8860-3.Google Scholar

  • [19] Zhao J, Chandrasekaran AR, Li Q, Li X, Sha R, Seeman NC, et al. Post-Assembly Stabilization of Rationally Designed DNA Crystals. Angew Chem Int Edit. 2015,54(34):9936-9.Google Scholar

  • [20] Liu Q, Liu G, Wang T, Fu J, Li R, Song L, et al. Enhanced Stability of DNA Nanostructures by Incorporation of Unnatural Base Pairs. Chemphyschem. 2017,18(21):2977-80.Google Scholar

  • [21] Shen W, Liu Q, Ding B, Shen Z, Zhu C, Mao C. The study of the paranemic crossover (PX) motif in the context of self-assembly of DNA 2D crystals. Organic & Biomolecular Chemistry. 2016,14(30):7187-90.CrossrefGoogle Scholar

  • [22] Wang M, Afshan N, Kou B, Xiao S-J. Self-Assembly of DNA Nanostructures Using Three-Way Junctions on Small Circular DNAs. Chemnanomat. 2017,3(10):740-4.Google Scholar

  • [23] Manuguerra I, Grossi G, Thomsen RP, Lyngso J, Pedersen JS, Kjems J, et al. Construction of a Polyhedral DNA 12-Arm Junction for Self-Assembly of Wireframe DNA Lattices. Acs Nano. 2017,11(9):9041-7.CrossrefGoogle Scholar

  • [24] Chen JH, Seeman NC. Synthesis from DNA of a molecule with the connectivity of a cube. Nature. 1991,350(6319):631-3.Google Scholar

  • [25] Zhang Y, Seeman NC. Construction of a DNA-Truncated Octahedron. J. Am. Chem. Soc., 1994,116(5):1661-9.Google Scholar

  • [26] He Y, Ye T, Su M, Zhang C, Ribbe AE, Jiang W, et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature. 2008,452(7184):198-U41.Google Scholar

  • [27] Tian C, Li X, Liu Z, Jiang W, Wang G, Mao C. Directed Self-Assembly of DNA Tiles into Complex Nanocages. Angew Chem Int Edit. 2014,53(31):8041-4.Google Scholar

  • [28] Li Y, Tian C, Liu Z, Jiang W, Mao C. Structural Transformation: Assembly of an Otherwise Inaccessible DNA Nanocage. Angew Chem Int Edit. 2015,54(20):5990-3.Google Scholar

  • [29] Liu Z, Tian C, Yu J, Li Y, Jiang W, Mao C. Self-Assembly of Responsive Multilayered DNA Nanocages. J. Am. Chem. Soc., 2015,137(5):1730-3.Google Scholar

  • [30] Wu XR, Wu CW, Ding F, Tian C, Jiang W, Mao CD, et al. Binary self-assembly of highly symmetric DNA nanocages via sticky-end engineering. Chinese Chemical Letters. 2017,28(4):851-6.Google Scholar

  • [31] Rothemund PWK. Folding DNA to create nanoscale shapes and patterns[J]. Nature. 2006,440:297.Google Scholar

  • [32] Qian L, Ying W, Zhao Z, Jian Z, Pan D, Yi Z, et al. Analogic China map constructed by DNA. Chinese Science Bulletin. 2006,51(24):2973-6.CrossrefGoogle Scholar

  • [33] Andersen ES, Dong M, Nielsen MM, Jahn K, Lind-Thomsen A, Mamdouh W, et al. DNA origami design of dolphin-shaped structures with flexible tails. Acs Nano. 2008,2(6):1213-8.PubMedGoogle Scholar

  • [34] Pound E, Ashton JR, Becerril HA, Woolley AT. Polymerase Chain Reaction Based Scaffold Preparation for the Production of Thin, Branched DNA Origami Nanostructures of Arbitrary Sizes. Nano Lett. 2009,9(12):4302-5.Google Scholar

  • [35] Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 2009,459(7243):73-U5.Google Scholar

  • [36] Kuzuya A, Komiyama M. Design and construction of a box-shaped 3D-DNA origami. Chem Commun. 2009(28):4182-4.CrossrefGoogle Scholar

  • [37] Endo M, Hidaka K, Kato T, Namba K, Sugiyama H. DNA Prism Structures Constructed by Folding of Multiple Rectangular Arms. J. Am. Chem. Soc., 2009,131(43):15570-1.Google Scholar

  • [38] Douglas SM, Dietz H, Liedl T, Hoegberg B, Graf F, Shih WM. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 2009,459(7245):414-8.Google Scholar

  • [39] Han D, Pal S, Liu Y, Yan H. Folding and cutting DNA into reconfigurable topological nanostructures. Nat Nanotech. 2010,5(10):712-7.Google Scholar

  • [40] Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. DNA origami with complex curvatures in three-dimensional space. Science. 2011,332(6027):342-6.Google Scholar

  • [41] Wei B, Dai M, Yin P. Complex shapes self-assembled from single-stranded DNA tiles. Nature. 2012,485(7400):623-6.Google Scholar

  • [42] Ouyang X, Li J, Liu H, Zhao B, Yan J, Ma Y, et al. Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs[J]. Small. 2013,9(18):3082-87.Google Scholar

  • [43] Zheng H, Xiao M, Yan Q, Ma Y, Xiao SJ. Small circular DNA molecules act as rigid motifs to build DNA nanotubes. J. Am. Chem. Soc., 2014,136(29):10194-97.Google Scholar

  • [44] Tigges T, Heuser T, Tiwari R, Walther A. 3D DNA Origami Cuboids as Monodisperse Patchy Nanoparticles for Switchable Hierarchical Self-Assembly. Nano Lett. 2016,16(12):7870-4.CrossrefGoogle Scholar

  • [45] Matthies M, Agarwal N, Schmidt TL. Design and synthesis of triangulated DNA origami trusses. Nano Lett. 2016,16(3):2108-13.CrossrefGoogle Scholar

  • [46] Ryosuke Iinuma YK, Ralf Jungmann, Thomas Schlichthaerle, Johannes B. Woehrstein, Peng Yin. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science. 2014,344(6179):65-9.Google Scholar

  • [47] Ma Z, Park S, Yamashita N, Kawai K, Hirai Y, Tsuchiya T, et al. Constructing higher order DNA origami arrays using DNA junctions of anti-parallel/parallel double crossovers. Japanese Journal of Applied Physics. 2016,55(6S1):06GL04-7.CrossrefGoogle Scholar

  • [48] Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P, et al. DNA rendering of polyhedral meshes at the nanoscale. Nature. 2015,523(7561):441-4.Google Scholar

  • [49] Zhang F, Jiang S, Wu S, Li Y, Mao C, Liu Y, et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat Nanotech. 2015,10(9):779-785.Google Scholar

  • [50] Hong F, Jiang S, Wang T, Liu Y, Yan H. 3D Framework DNA Origami with Layered Crossovers. Angew Chem. 2016,55(41):12832-12835.Google Scholar

  • [51] Zhang F, Yan H. DNA self-assembly scaled up. Nature. 2017,552(7683):34-35.Google Scholar

  • [52] Tikhomirov G, Petersen P, Qian L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature. 2017,552(7683):67-71.Google Scholar

  • [53] Wagenbauer KF, Sigl C, Dietz H. Gigadalton-scale shapeprogrammable DNA assemblies. Nature. 2017,552(7683):78-83.Google Scholar

  • [54] Ong LL, Hanikel N, Yaghi OK, Grun C, Strauss MT, Bron P, et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature. 2017,552(7683):72-77.Google Scholar

  • [55] Praetorius F, Kick B, Behler KL, Honemann MN, Weuster-Botz D, Dietz H. Biotechnological mass production of DNA origami. Nature. 2017,552(7683):84-87.Google Scholar

  • [56] Agarwal NP, Matthies M, Gur FN, Osada DK, et al. Block Copolymer Micellization as a Protection Strategy for DNA Origami. Angew Chem Inter Ed. 2017,56(20):5460-4.Google Scholar

  • [57] Cui Y, Chen R, Kai M, Wang Y, Mi Y, Wei B. Versatile DNA Origami Nanostructures in Simplified and Modular Designing Framework. Acs Nano. 2017,11(8):8199-8206.PubMedGoogle Scholar

  • [58] Lee JH, Wernette DP, Yigit MV, Liu J, Wang Z, Lu Y. Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. Angewandte Chemie. 2010,119(47):9164-8.Google Scholar

  • [59] And JL, Lu Y. Non-Base Pairing DNA Provides a New Dimension for Controlling Aptamer-Linked Nanoparticles and Sensors. J. Am. Chem. Soc., 2007,129(27):8634-43.Google Scholar

  • [60] Wang Z, Zhang J, Ekman JM, Kenis PJ, Lu Y. DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett. 2010,10(5):1886-1891.PubMedCrossrefGoogle Scholar

  • [61] Li HT, Yuan Y, Satyavolu NSR, Ali AS, Wang Z, Wu Y, et al. Mechanistic Insight into DNA-Guided Control of Nanoparticle Morphologies. J. Am. Chem. Soc., 2015,137(45):14456-14464.Google Scholar

  • [62] Wang ZD, Tang LH, Tan LH, Li JH, Lu Y. Discovery of the DNA “Genetic Code” for Abiological Gold Nanoparticle Morphologies. Angew Chem . 2012,51(36):9078-9082.Google Scholar

  • [63] Wu J, Tan LH, Hwang K, Xing H, Wu P, Li W, et al. DNA sequencedependent morphological evolution of silver nanoparticles and their optical and hybridization properties. J. Am. Chem. Soc., 2014,136(43):15195-202.Google Scholar

  • [64] Li HT, Hang X, Chen H, Yi L. Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly. J. Am. Chem. Soc., 2013,135(47):17675-8.Google Scholar

  • [65] Xing H, Wang Z, Xu Z, Wong NY, Xiang Y, Liu GL, et al. DNA-Directed Assembly of Asymmetric Nanoclusters Using Janus Nanoparticles. Acs Nano. 2012,6(1):802-9.CrossrefPubMedGoogle Scholar

  • [66] Song T, Tang L, Tan LH, Wang X, Satyavolu NSR, Xing H, et al. DNA‐Encoded Tuning of Geometric and Plasmonic Properties of Nanoparticles Growing from Gold Nanorod Seeds. Angew Chem. 2015,54(28):8114-8.Google Scholar

  • [67] Satyavolu NS, Tan LH, Lu Y. DNA-Mediated Morphological Control of Pd-Au Bimetallic Nanoparticles. Journal of the American Chemical Society. 2016,138(50):16542-8.Google Scholar

  • [68] Li N, Tittl A, Yue S, Giessen H, Song C, Ding B, et al. DNA-assembled bimetallic plasmonic nanosensors. Light Science & Applications. 2014,3:e226-4.Google Scholar

  • [69] Weller L, Thacker VV, Herrmann LO, Hemmig EA, Lombardi A, Keyser UF, et al. Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly. Acs Photonics. 2016,3(9):1589-1595.Google Scholar

  • [70] Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD. Nanogapengineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater. 2010,9(1):60-7.PubMedCrossrefGoogle Scholar

  • [71] Gates EP, Jensen JK, Harb JN, Woolley AT. Optimizing gold nanoparticle seeding density on DNA origami. Rsc Advances. 2015,5(11):8134-41.Google Scholar

  • [72] Gur FN, Schwarz FW, Ye J, Diez S, Schmidt TL. Towards Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates. Acs Nano. 2016,10(5):5374-82.CrossrefGoogle Scholar

  • [73] Chao J, Zhang Y, Zhu D, Liu B, Cui C, Su S, et al. Heteroassembly of gold nanoparticles on a DNA origami template. Scientia Sinica Chemica. 2016,59(6):730-4.Google Scholar

  • [74] Prinz J, Heck C, Ellerik L, Merk V, Bald I. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity. Nanoscale. 2016,8(10):5612-20.Google Scholar

  • [75] Song L, Jiang Q, Liu J, Li N, Liu Q, Dai L, et al. DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance. Nanoscale. 2017,9(23):7750-4.Google Scholar

  • [76] Jiang Q, Shi Y, Zhang Q, Li N, Zhan P, Song L, et al. A Self‐ Assembled DNA Origami-Gold Nanorod Complex for Cancer Theranostics. Small. 2015,11(38):5134-41.Google Scholar

  • [77] Jiang Q, Liu Q, Shi Y, Wang ZG, Zhan P, Liu J, et al. Stimulus- Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami. Nano Lett. 2017,17(11):7125-30.CrossrefGoogle Scholar

  • [78] Liu W, Li L, Yang S, Gao J, Wang R. Self-Assembly of Heterogeneously Shaped Nanoparticles into Plasmonic Metamolecules on DNA Origami. Chemistry. 2017,23(57):14177-81.Google Scholar

  • [79] Zhan P, Dutta PK, Wang P, Song G, Dai M, Zhao SX, et al. Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod. Acs Nano. 2011,11(2):1172-9.Google Scholar

  • [80] Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science. 2009,323(5910):112-116.Google Scholar

  • [81] Shen X, Song C, Wang J, Shi D, Wang Z, Liu N, et al. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc., 2012,134(1):146-9.Google Scholar

  • [82] Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller EM, Hogele A, et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature. 2012,483(7389):311-4.Google Scholar

  • [83] Shen X, Asenjogarcia A, Liu Q, Jiang Q, Fj GDA, Liu N, et al. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 2013,13(5):2128-2133.CrossrefPubMedGoogle Scholar

  • [84] Wang P, Gaitanaros S, Lee S, Bathe M, Shih WM, Ke Y. Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials. J. Am. Chem. Soc., 2016,138(17):5495-8.Google Scholar

  • [85] Urban MJ, Dutta PK, Wang P, Duan X, Shen X, Ding B, et al. Plasmonic Toroidal Metamolecules Assembled by DNA Origami. J. Am. Chem. Soc., 2016,138(17):5495-8.Google Scholar

  • [86] Shen C, Lan X, Zhu C, Zhang W, Wang L, Wang Q. Spiral Patterning of Au Nanoparticles on Au Nanorod Surface to Form Chiral AuNR@AuNP Helical Superstructures Templated by DNA Origami. Adv Mater. 2017,29(16):1606533.Google Scholar

  • [87] Shen X, Zhan P, Kuzyk A, Liu Q, Asenjogarcia A, Zhang H, et al. 3D plasmonic chiral colloids. Nanoscale. 2014,6(4):2077-81.Google Scholar

  • [88] Kuzyk A, Schreiber R, Zhang H, Govorov AO, Liedl T, Liu N. Reconfigurable 3D plasmonic metamolecules. Nat Mater. 2014,13(9):862-6.CrossrefPubMedGoogle Scholar

  • [89] Kuzyk A, Urban MJ, Idili A, Ricci F, Liu N. Selective control of reconfigurable chiral plasmonic metamolecules. Science Adv. 2017,3(4):e1602803-6.Google Scholar

  • [90] Zhou C, Duan X, Liu N. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic. Acc Chem Res. 2017,50(12):2906-2914.Google Scholar

  • [91] Lan X, Lu X, Shen C, Ke Y, Ni W, Wang Q. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc., 2015,137(1):457-62.Google Scholar

  • [92] Kuzyk A, Yang Y, Duan X, Stoll S, Govorov AO, Sugiyama H, et al. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat Commun. 2016,7:10591-6.Google Scholar

  • [93] Shen J, Luan B, Pei H, Yang Z, Zuo X, Liu G, et al. Humidity- Responsive Single-Nanoparticle-Layer Plasmonic Films. Adv Mater. 2017,29(35):1606796-6.Google Scholar

  • [94] Schreiber R, Santiago I, Ardavan A, Turberfield AJ. Ordering Gold Nanoparticles with DNA Origami Nanoflowers. Acs Nano. 2016,10(8):7303-6.PubMedGoogle Scholar

  • [95] Kinneret Keren, Rotem S. Berman, Erez Braun. Patterned DNA Metallization by Sequence-Specific Localization of a Reducing Agent. Nano Lett. 2004,4(2):323-6.Google Scholar

  • [96] Kundu S, Liang H. Microwave synthesis of electrically conductive gold nanowires on DNA scaffolds. Langmuir 2008,24(17):9668-74.CrossrefGoogle Scholar

  • [97] Aherne D, Satti A, Fitzmaurice D. Diameter-dependent evolution of failure current density of highly conducting DNA-templated gold nanowires. Nanotechnology. 2007,18(12):125205.Google Scholar

  • [98] Braun E, Eichen Y, Sivan U, Benyoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature. 1998,391(6669):775-8.Google Scholar

  • [99] Liu D, Park SH, Reif JH, Labean TH. DNA Nanotubes Self-Assembled from Triple-Crossover Tiles as Templates for Conductive Nanowires. Proc Natl Acad Sci USA. 2004,101(3):717-22.Google Scholar

  • [100] SHP, Robert Barish, Hanying Li, JHR, Gleb Finkelstein, Yan, Hao, et al. Three-Helix Bundle DNA Tiles Self-Assemble into 2D Lattice or 1D Templates for Silver Nanowires. Nano Lett. 2005,5(4):693-6.CrossrefGoogle Scholar

  • [101] Park SH, Prior MW, Labean TH, Finkelstein G. Optimized fabrication and electrical analysis of silver nanowires templated on DNA molecules. Applied Physics Letters. 2006,89(3):033901-3.Google Scholar

  • [102] And CFM, Woolley AT. DNA-Templated Construction of Copper Nanowires. Nano Lett. 2003,3(3):359-63.Google Scholar

  • [103] Becerril HA, Ludtke P, And BMW, Woolley AT. DNA-Templated Nickel Nanostructures and Protein Assemblies. Langmuir 2006,22(24):10140-4.Google Scholar

  • [104] Gu Q, Cheng C, Suryanarayanan S, Dai K, Haynie DT. DNA-templated fabrication of nickel nanocluster chains. Physica E: Low-dimensional Systems and Nanostructures. 2006,33(1):92-8.Google Scholar

  • [105] Richter J, Mertig M, Pompe W, Monch I. Construction of highly conductive nanowires on a DNA template. Applied Physics Letters. 2001,78(4):536-8.Google Scholar

  • [106] Richter J, Mertig M, Pompe W, Vinzelberg H. Low-temperature resistance of DNA-templated nanowires. Applied Physics A. 2002,74(6):725-8.Google Scholar

  • [107] Deng ZX, Mao CD. DNA-Templated Fabrication of 1D Parallel and 2D Crossed Metallic Nanowire Arrays. Nano Lett. 2014,3(11):1545-8.Google Scholar

  • [108] Liu H, Chen Y, He Y, Ribbe AE, Mao C. Approaching the limit: can one DNA oligonucleotide assemble into large nanostructures. Angewandte Chemie. 2010,118(12):1976-9.Google Scholar

  • [109] Nguyen K, Monteverde M, Filoramo A, Goux-Capes L, Lyonnais S, Jegou P, et al. Synthesis of Thin and Highly Conductive DNA-Based Palladium Nanowires. Adv Mater. 2010,20(6):1099-104.Google Scholar

  • [110] Kundu S, Wang K, Huitink D, Liang H. Photoinduced formation of electrically conductive thin palladium nanowires on DNA scaffolds. Langmuir. 2009,25(17):10146-52.CrossrefGoogle Scholar

  • [111] Ford WE, Harnack O, Yasuda A, Wessels JM. Platinated DNA as Precursors to Templated Chains of Metal Nanoparticles. Adv Mater. 2001,13(23):1793-7.Google Scholar

  • [112] Mertig M, Ciacchi LC, Ralf Seidel A, Pompe W, Vita AD. DNA as a Selective Metallization Template. Nano Lett. 2002,2(2):841-4.Google Scholar

  • [113] Ralf Seidel, LCC, Michael Weigel, Wolfgang Pompe A, Michael Mertig. Synthesis of Platinum Cluster Chains on DNA Templates: Conditions for a Template-Controlled Cluster Growth. J Phy Chem B. 2004,108(30):10801-11.Google Scholar

  • [114] Gu Q, Haynie DT. Palladium nanoparticle-controlled growth of magnetic cobalt nanowires on DNA templates. Materials Letters. 2008,62(17):3047-50.CrossrefGoogle Scholar

  • [115] Liu J, Geng Y, Pound E, Gyawali S, Ashton JR, Hickey J, et al. Metallization of Branched DNA Origami for Nanoelectronic Circuit Fabrication. Acs Nano. 2011,5(3):2240-2247.Google Scholar

  • [116] Pearson AC, Liu J, Pound E, Uprety B, Woolley AT, Davis RC, et al. DNA origami metallized site specifically to form electrically conductive nanowires. J Phy Chem B. 2012,116(35):10551-10560.Google Scholar

  • [117] Geng Y, Pearson AC, Gates EP, Uprety B, Davis RC, Harb JN, et al. Electrically conductive gold- and copper-metallized DNA origami nanostructures. Langmuir 2013,29(10):3482-90.Google Scholar

  • [118] Uprety B, Gates EP, Geng Y, Woolley AT, Harb JN. Site-specific metallization of multiple metals on a single DNA origami template. Langmuir 2014,30(4):1134-41.CrossrefPubMedGoogle Scholar

  • [119] Uprety B, Westover T, Stoddard M, Brinkerhoff K, Jensen J, Davis RC, et al. Anisotropic Electroless Deposition on DNA Origami Templates To Form Small Diameter Conductive Nanowires. Langmuir. 2017,33(3):726-735.Google Scholar

  • [120] Ennifar E, Walter P, Dumas P. A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res. 2003,31(10):2671-82.Google Scholar

  • [121] Funai T, Miyazaki Y, Aotani M, Yamaguchi E, Nakagawa O, Wada SI, et al. Ag I Ion Mediated Formation of a C-A Mispair by DNA Polymerases. Angewandte Chemie. 2012,51(26):6464-6.Google Scholar

  • [122] Swasey SM, Leal LE, Lopezacevedo O, Pavlovich J, Gwinn EG. Silver (I) as DNA glue: Ag(+)-mediated guanine pairing revealed by removing Watson-Crick constraints. Sci Rep-Uk. 2015,5:10163-9.Google Scholar

  • [123] Kondo J, Tada Y, Dairaku T, Saneyoshi H, Okamoto I, Tanaka Y, et al. High-Resolution Crystal Structure of a Silver(I)-RNA Hybrid Duplex Containing Watson-Crick-like C-Silver(I)-C Metallo-Base Pairs. Angewandte Chemie. 2015,54(45):13323-6.Google Scholar

  • [124] Tanaka K, Tengeiji A, Kato T, Toyama N, Shionoya M. A Discrete Self-Assembled Metal Array in Artificial DNA. Science. 2003,299(5610):1212-3.Google Scholar

  • [125] Kuklenyik Z, Marzilli LG. Mercury(II) Site-Selective Binding to a DNA Hairpin. Relationship of Sequence- Dependent Intra- and Interstrand Cross-Linking to the Hairpin-Duplex Conformational Transition. Inorg Chem. 1996,35(19):5654-5662.CrossrefGoogle Scholar

  • [126] Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, et al. MercuryII-mediated formation of thymine-HgIIthymine base pairs in DNA duplexes. J. Am. Chem. Soc., 2006,128(7):2172-3.Google Scholar

  • [127] Tanaka Y, Kondo J, Sychrovsk V, Sebera J, Dairaku T, Saneyoshi H, et al. ChemInform Abstract: Structures, Physicochemical Properties, and Applications of T-HgII-T, C-AgI-C, and Other Metallo-Base-Pairs. Chem Commun. 2015,51(98):17343-60.Google Scholar

  • [128] Yamaguchi H, Sebera J, Kondo J, Oda S, Komuro T, Kawamura T, et al. The structure of metallo-DNA with consecutive thymine-HgII-thymine base pairs explains positive entropy for the metallo base pair formation. Nucleic Acids Res. 2014,42(6):4094-9.CrossrefGoogle Scholar

  • [129] Clever GH, Carell T. Controlled stacking of 10 transition-metal ions inside a DNA duplex. Cheminform. 2007,38(7):250-3.Google Scholar

  • [130] Chen MC, Murat P, Abecassis K, Ferred’Amare AR, Balasubramanian S. Insights into the mechanism of a G-quadruplex-unwinding DEAH-box helicase. Nucleic Acids Res. 2015,43(4):2223-31.Google Scholar

  • [131] Auffinger P, Ennifar E. Nucleic acid nanomaterials: Silver-wired DNA. Nat Chem. 2017,9(10):932-4.CrossrefGoogle Scholar

  • [132] Liu H, Shen F, Haruehanroengra P, Yao Q, Cheng Y, Chen Y, et al. A DNA Structure Containing AgI-Mediated G:G and C:C Base Pairs. Angewandte Chemie. 2017,56(32):9430-4.Google Scholar

  • [133] Kondo J, Tada Y, Dairaku T, Hattori Y, Saneyoshi H, Ono A, et al. A metallo-DNA nanowire with uninterrupted one-dimensional silver array. Nat Chem. 2017,9(10):956-960.CrossrefGoogle Scholar

  • [134] Chandrasekaran AR. DNA arrays with a silver lining. Chembiochem. 2017, 18(19), 1886-1887.CrossrefGoogle Scholar

  • [135] Yang L, Chen G, Wang J, Wang T, Li M, Liu J. Sunlight-induced formation of silver-gold bimetallic nanostructures on DNA template for highly active surface enhanced Raman scattering substrates and application in TNT/tumor marker detection. J Mater Chem. 2009,19(37):6849-56.Google Scholar

  • [136] Sun H, Ren J, Qu X. Carbon Nanomaterials and DNA: from Molecular Recognition to Applications. Acc Chem Res. 2016,49(3):461-470.CrossrefGoogle Scholar

  • [137] Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater. 2003,2(5):338-42.Google Scholar

  • [138] Wu Y, Phillips JA, Liu H, Yang R, Tan W. Carbon nanotubes protect DNA strands during cellular delivery. Acs Nano. 2008,2(10):2023-2028.Google Scholar

  • [139] Yang R, Jin J, Chen Y, Shao N, Kang H, Xiao Z, et al. Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J. Am. Chem. Soc., 2008,130(26):8351-8358.Google Scholar

  • [140] Zhao C, Qu K, Ren J, Qu X. Proton-Fueled DNA-Duplex-Based Stimuli-Responsive Reversible Assembly of Single-Walled Carbon Nanotubes. Chemistry. 2011,17(25):7013-9.Google Scholar

  • [141] Chao Z, Qu K, Xu C, Ren J, Qu X. Triplex inducer-directed self-assembly of single-walled carbon nanotubes: a triplex DNA-based approach for controlled manipulation of nanostructures. Nucleic Acids Res. 2011,39(9):3939-48.Google Scholar

  • [142] Chen Y, Qu K, Zhao C, Wu L, Ren J, Wang J, et al. Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres. Nat Commun. 2012,3(3):1074.Google Scholar

  • [143] Li X, Peng Y, Ren J, Qu X. Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. P Natl Acad Sci USA. 2006,103(52):19658-63.Google Scholar

  • [144] Song Y, Feng L, Ren J, Qu X. Stabilization of unstable CGC+ triplex DNA by single-walled carbon nanotubes under physiological conditions. Nucleic Acids Res. 2011,39(15):6835-43.CrossrefGoogle Scholar

  • [145] Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev 2009,39(1):228-40.Google Scholar

  • [146] Feng L, Wu L, Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater. 2013,25(2):168-86.Google Scholar

  • [147] Qu K, Ren J, Qu X. pH-responsive, DNA-directed reversible assembly of graphene oxide. Molecular Biosystems. 2011,7(9):2681-7.Google Scholar

  • [148] Lin Y, Yu T, Fang P, Ren J, Qu X. Combination of Graphene Oxide and Thiol-Activated DNA Metallization for Sensitive Fluorescence Turn-On Detection of Cysteine and Their Use for Logic Gate Operations. Adv Funct Mater. 2011,21(23):4565-72.Google Scholar

  • [149] Qu K, Wu L, Ren J, Qu X. Natural DNA-Modified Graphene/ Pd Nanoparticles as Highly Active Catalyst for Formic Acid Electro-Oxidation and for the Suzuki Reaction. Acs Appl Mater Inter. 2012,4(9):5001-9.Google Scholar

  • [150] Li H, Kang Z, Liu Y, Lee ST. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012,22(46):24230-53.Google Scholar

  • [151] Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 2013,5(10):4015-39.Google Scholar

  • [152] Feng L, Zhao A, Ren J, Qu X. Lighting up left-handed Z-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations. Nucleic Acids Res. 2013,41 (16):7987-7996.CrossrefGoogle Scholar

  • [153] Humar M, Yun SH. Intracellular microlasers. Nat photonics. 2015,9(9):572-576.Google Scholar

  • [154] Sargent EH, Fan F, Zhang L, Aldridge PM, Jean SR, Kelley SO, et al. Multifunctional quantum dot DNA hydrogels. Nat commun. 2017,8(1):381-9.Google Scholar

  • [155] Shen J, Tang Q, Li L, Li J, Zuo X, Qu X, et al. Valence- Engineering of Quantum Dots Using Programmable DNA Scaffolds. Angew Chem Int Ed Engl. 2017,56(50):16077-16081.Google Scholar

  • [156] Czaja AU, Trukhan N, Mueller U. ChemInform Abstract: Industrial Applications of Metal-Organic Frameworks. Cheminform. 2009,40(29):1284-93.Google Scholar

  • [157] Zhou HC, Long JR, Yaghi OM. Introduction to Metal-Organic Frameworks. Chemical Reviews. 2012,112(2):673-674.Google Scholar

  • [158] Saha D, Bao Z, Jia F, Deng S. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A. Environ Sci Technol. 2010,44(5):1820-6.Google Scholar

  • [159] Nazari M, Rubio‐Martinez M, Tobias G, Barrio JP, Babarao R, Nazari F, et al. Metal-Organic-Framework-Coated Optical Fibers as Light-Triggered Drug Delivery Vehicles. Adv Funct Mater. 2016,26(19):3244-9.Google Scholar

  • [160] Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nystrom AM, et al. One-pot Synthesis of Metal-Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. J. Am. Chem. Soc., 2016,138(3):962-8.Google Scholar

  • [161] He C, Liu D, Lin W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds: Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers. Chem. Rev., 2015,115(19):11079-11108.Google Scholar

  • [162] Wu MX, Yang YW. Metal-OrganicFramework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv Mater. 2017,29(23):1606134.Google Scholar

  • [163] Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010,9(2):172-178.CrossrefGoogle Scholar

  • [164] Kahn JS, Freage L, Enkin N, Garcia MA, Willner I. Stimuli- Responsive DNA-Functionalized Metal-Organic Frameworks (MOFs). Adv Mater. 2017,29(6), 1602782-6.Google Scholar

  • [165] Chen WH, Yu X, Cecconello A, Sohn YS, Nechushtai R, Willner I. Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. Chem Sci., 2017,8(8):5769-5780.Google Scholar

  • [166] Wang S, Mcguirk CM, Ross MB, Wang S, Chen P, Xing H, et al. General and Direct Method for Preparing Oligonucleotide- Functionalized Metal-Organic Framework Nanoparticles. J. Am. Chem. Soc., 2017,139(29):9827-9830.Google Scholar

  • [167] Morris W, Briley WE, Auyeung E, Cabezas MD, Mirkin CA. Nucleic Acid-Metal Organic Framework (MOF) Nanoparticle Conjugates. J. Am. Chem. Soc., 2014,136(20):7261-7264.Google Scholar

  • [168] Langer R, Tirrell DA. Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487-492. Nature. 2004,428(6982):487-92.Google Scholar

  • [169] Brodin JD, Auyeung E, Mirkin CA. DNA-mediated engineering of multicomponent enzyme crystals. P Natl Acad Sci USA. 2015,112(15):4564-9.Google Scholar

  • [170] Bergman DJ, Stockman MI. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett. 2003,90(2):027402.Google Scholar

  • [171] Wang Z, Fu Y, Kang Z, Liu X, Chen N, Wang Q, et al. Organelle-Specific Triggered Release of Immunostimulatory Oligonucleotides from Intrinsically Coordinated DNA-Metal- Organic Frameworks with Soluble Exoskeleton. J. Am. Chem. Soc., 2017.139(44):15784-15791.Google Scholar

  • [172] Guo Y, Jiang Z, Ying W, Chen L, Liu Y, Wang X, et al. A DNA-Threaded ZIF-8 Membrane with High Proton Conductivity and Low Methanol Permeability. Adv Mater. 2018,30(2):1705155-8.Google Scholar

  • [173] Kawamoto H. The history of liquid-crystal displays. Proc IEEE. 2002,90(4):460-500.Google Scholar

  • [174] Brake JM, Daschner MK, Luk YY, Abbott NL. Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals. Science. 2003,302(5653):2094-7.Google Scholar

  • [175] Adgate JL, Bartekova A, Raynor PC, Griggs JG, Ryan AD, Acharya BR, et al. Detection of organophosphate pesticides using a prototype liquid crystal monitor. J Env Monit. 2009,11(1):49-55.Google Scholar

  • [176] Nakata M, Zanchetta G, Chapman BD, Jones CD, Cross JO, Pindak R, et al. End-to-end stacking and liquid crystal condensation of 6 to 20 base pair DNA duplexes. Science. 2007,318(5854):1276-9.Google Scholar

  • [177] Koltover I, Salditt T, Radler JO, Safinya CR. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science. 1998,281(5373):78-81.Google Scholar

  • [178] Strzelecka TE, Davidson MW, Rill RL. Multiple liquid crystal phases of DNA at high concentrations. Nature. 1988,331(6155):457-60.Google Scholar

  • [179] Livolant F. Ordered phases of DNA in vivo and in vitro. Physica A. 1991,176(1):117-37.Google Scholar

  • [180] Yu SM, Conticello VP, Zhang G, Kayser C, Fournier MJ, Mason TL, et al. Smectic ordering in solutions and films of a rod-like polymer owing to monodispersity of chain length. Nature. 1997,389(6647):167-70.Google Scholar

  • [181] Chung WJ, Oh JW, Kwak K, Lee BY, Meyer J, Wang E, et al. Biomimetic self-templating supramolecular structures. Nature. 2011,478(7369):364-.Google Scholar

  • [182] Iwabata K, Nakabayashi T, Uchiyama Y, Inoue M, Taki S, Ando K, et al. Dielectric Relaxation Analysis of Single-Stranded DNA in Liquid Crystals. Jpn J Appl Phys. 2010,49(8):547-69.Google Scholar

  • [183] Salamonczyk M, Zhang J, Portale G, Zhu C, Kentzinger E, Gleeson JT, et al. Smectic phase in suspensions of gapped DNA duplexes. Nat Commun. 2016,7:13358.Google Scholar

  • [184] Fraccia TP, Smith GP, Zanchetta G, Paraboschi E, Yi Y, Walba DM, et al. Abiotic ligation of DNA oligomers templated by their liquid crystal ordering. Nat Commun. 2015,6:6424.Google Scholar

  • [185] Ewert KK, Evans HM, Zidovska A, Bouxsein NF, Ahmad A, Safinya CR. A columnar phase of dendritic lipid-based cationic liposome-DNA complexes for gene delivery: hexagonally ordered cylindrical micelles embedded in a DNA honeycomb lattice. J Am Chem Soc. 2006,128(12):3998.Google Scholar

  • [186] Bouxsein NF, Leal C, Mcallister CS, Ewert KK, Li Y, Samuel CE, et al. Two-Dimensional Packing of Short DNA with Non-Pairing Overhangs in Cationic Liposome-DNA Complexes: From Onsager Nematics to Columnar Nematics With Finite-Length Columns. J Am Chem Soc. 2011,133(19):7585-95.Google Scholar

  • [187] Zidovska A, Evans HM, Kai KE, Quispe J, Carragher B, Potter CS, et al. Liquid Crystalline Phases of Dendritic Lipid-DNA Self-Assemblies: Lamellar, Hexagonal, and DNA Bundles. J Phys Chem B. 2009,113(12):3694-703.Google Scholar

  • [188] Safinya CR, Deek J, Beck R, Jones JB, Leal C, Kai KE, et al. Liquid crystal assemblies in biologically inspired systems. Liq Cryst. 2013,40(12):1748-58.CrossrefGoogle Scholar

  • [189] Bilalov A, Olsson U, Lindman B. DNA-lipid self-assembly: phase behavior and phase structures of a DNA-surfactant complex mixed with lecithin and water. Soft Matter. 2010,7(7):730-42.Google Scholar

  • [190] Leal C, Bilalov A, Lindman B. The effect of postadded ethylene glycol surfactants on DNA-cationic surfactant/water mesophases. J Phys Chem B. 2009,113(29):9909-14.Google Scholar

  • [191] Krivtsov A, Bilalov A, Olsson U, Lindman B. DNA with doublechained amphiphilic counterions and its interaction with lecithin. Langmuir. 2012,28(38):13698-704.Google Scholar

  • [192] Liu K, Chen D, Marcozzi A, Zheng L, Su J, Pesce D, et al. Thermotropic liquid crystals from biomacromolecules. Proc Natl Acad Sci USA. 2014,111(52):18596-600.Google Scholar

  • [193] Liu K, Varghese J, Gerasimov JY, Polyakov AO, Shuai M, Su J, et al. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals. Nat Commun. 2016,7:11476.Google Scholar

  • [194] Liu K, Ma C, Gostl R, Zhang L, Herrmann A. Liquefaction of Biopolymers: Solvent-free Liquids and Liquid Crystals from Nucleic Acids and Proteins. Acc Chem Res. 2017,50(5):1212.Google Scholar

  • [195] Zhang L, Maity S, Liu K, Liu Q, Gostl R, Portale G, et al. Nematic DNA Thermotropic Liquid Crystals with Photoresponsive Mechanical Properties. Small. 2017,13(34):1701207.Google Scholar

  • [196] Liu K, Shuai M, Chen D, Tuchband M, Gerasimov JY, Su J, et al. Solvent-free Liquid Crystals and Liquids from DNA. Chem Eur J. 2015,21(13):4898-903.Google Scholar

  • [197] Zhang L, Ma C, Sun J, Shao B, Portale G, Chen D, et al. Genetically Engineered Supercharged Polypeptide Fluids: Fast and Persistent Self-Ordering Induced by Touch. Angew Chem Int Ed.2018,5.Google Scholar

About the article

Received: 2018-07-03

Accepted: 2018-09-10

Published Online: 2018-11-21

Published in Print: 2018-11-01


Citation Information: Nanofabrication, Volume 4, Issue 1, Pages 32–52, ISSN (Online) 2299-680X, DOI: https://doi.org/10.1515/nanofab-2018-0003.

Export Citation

© by Zhiguang Suo, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Joshua A. Johnson, Abhilasha Dehankar, Ariel Robbins, Prerna Kabtiyal, Elizabeth Jergens, Kil Ho Lee, Ezekiel Johnston-Halperin, Michael Poirier, Carlos E. Castro, and Jessica O. Winter
Materials Science and Engineering: R: Reports, 2019, Volume 138, Page 153
[2]
Zhiguang Suo, Jingqi Chen, Xialing Hou, Ziheng Hu, Feifei Xing, and Lingyan Feng
RSC Advances, 2019, Volume 9, Number 29, Page 16479
[3]
Ziheng Hu, Zhiguang Suo, Wenxia Liu, Biying Zhao, Feifei Xing, Yuan Zhang, and Lingyan Feng
Biosensors and Bioelectronics, 2019, Volume 131, Page 237

Comments (0)

Please log in or register to comment.
Log in