[1]

Abelès F, Lopez-Rios T. Surface polaritons at metal surfaces and interfaces. In: Agranovich VM and Mills DL, editors. Surface ploaritions. Amsterdam: North-Holland Publishing Company; 1982, pp. 239–74.Google Scholar

[2]

Raether H. Surface plasmons. Berlin: Springer-Verlag; 1988.Google Scholar

[3]

Zayats AV, Smolyaninov II, Maradudin AA. Nano-optics of surface plasmon polaritons. Phys Reports 2005;408:131–314.CrossrefGoogle Scholar

[4]

Weeber J-C, Krenn JR, Dereux A, Lamprecht B, Lacroute Y, Goudonnet JP. Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys Rev B 2001;64:045411–1–9.CrossrefGoogle Scholar

[5]

Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 2003;424:824–30.CrossrefGoogle Scholar

[6]

Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006;440:508–11.CrossrefGoogle Scholar

[7]

Moreno E, Rodrigo SG, Bozhevolnyi SI, Martín-Moreno L, García-Vidal FJ. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett 2008;100:023901.CrossrefGoogle Scholar

[8]

Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nature Photon 2010;4:83–91.CrossrefGoogle Scholar

[9]

Stockman MI. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 2004;93:137404.CrossrefGoogle Scholar

[10]

Verhagen E, Polman A, Kuipers L. Nanofocusing in laterally tapered plasmonic waveguides. Opt Express 2008;16:45–57.CrossrefGoogle Scholar

[11]

Hohenau A, Krenn JR, Stepanov AL, Drezet A, Ditlbacher H, Steinberger B, Leitner A, Aussenegg FR. Dielectric optical elements for surface plasmons. Opt Lett 2005;30:893–5.CrossrefGoogle Scholar

[12]

Steinberger B, Hohenau A, Ditlbacher H, Aussenegg FR, Leitner A, Krenn JR. Dielectric stripes on gold as surface plasmon waveguides: bends and directional couplers. Appl Phys Lett 2007;91:081111.CrossrefGoogle Scholar

[13]

Holmgaard T, Bozhevolnyi SI. Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 2007;75:245405.CrossrefGoogle Scholar

[14]

Krasavin AV, Zayats AV. Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett 2007;90:211101.CrossrefGoogle Scholar

[15]

Grandidier J, Massenot S, Colas des Francs G, Bouhelier A, Weeber J-C, Markey L, Dereux A, Renger J, González MU, Quidant R. Dielectricloaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy. Phys Rev B 2008;78:245419.CrossrefGoogle Scholar

[16]

Pendry JB, Martín-Moreno L, García-Vidal FJ. Mimicking surface plasmons with structured surfaces. Science 2004;305:847–8.CrossrefGoogle Scholar

[17]

Ramakrishna SA, Mandal P, Jeyadheepan K, Shukla N, Chakrabarti S, Kadic M, Enoch S, Guenneau S. Plasmonic interaction of visible light with gold nanoscale checkerboards. Phys Rev B 2011;84:245424.CrossrefGoogle Scholar

[18]

Wood JJ, Tomlinson LA, Hess O, Maier SA, Fernández-Domínguez AI. Spoof plasmon polaritons in slanted geometries. Phys Rev B 2012;85:075441.CrossrefGoogle Scholar

[19]

Smolyaninov II, Hung YJ, Davis CC. Twodimensional metamaterial structure exhibiting reduced visibility at 500 nm. Opt Lett 2008;33:1342–4.CrossrefGoogle Scholar

[20]

Smolyaninov II. Two-dimensional metamaterial optics. Laser Phys Lett 2010;7:259–69.CrossrefGoogle Scholar

[21]

Baumeier B, Leskova TA, Maradudin AA. Cloaking from surface plasmon polaritons by a circular array of point scatterers. Phys Rev Lett 2009;103:246803.CrossrefGoogle Scholar

[22]

Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312:1780–2.CrossrefGoogle Scholar

[23]

Leonhardt Ulf. Optical conformal mapping. Science 2006;312:1777–80.CrossrefGoogle Scholar

[24]

Kildishev AV, Cai W, Chettiar UK, Shalaev VM. Transformation optics: approaching broadband electromagnetic cloaking. New J Phys 2008;10:115029.CrossrefGoogle Scholar

[25]

Li J, Pendry JB. Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 2008;101:203901.CrossrefGoogle Scholar

[26]

Crudo RA, O’Brien JG. Metric approach to transformation optics. Phys Rev A 2009;80:033824.CrossrefGoogle Scholar

[27]

Kwon D-H, Werner DH. Transformation electromagnetics: an overview of the theory and applications. Antennas and Propagation Magazine, IEEE 2010;52:24–46.Google Scholar

[28]

Gallina I, Castaldi G, Galdi V, Alu A, Engheta N. General class of metamaterial transformation slabs. Phys Rev B 2010;81:125124.CrossrefGoogle Scholar

[29]

Popa B-I, Cummer SA. Design of layered transformation-optics devices of arbitrary shape. Phys Rev A 2010;82:033837.CrossrefGoogle Scholar

[30]

Guenneau S, McPhedran RC, Enoch S, Movchan AB, Farhat M, Nicorovici N-AP. The colours of cloaks. J Opt 2011;13:024014.CrossrefGoogle Scholar

[31]

Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr, AF, Smith DR. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006;314:977–80.CrossrefGoogle Scholar

[32]

Cai W, Chettiar UK, Kildishev AV, Shalaev VM. Optical cloaking with metamaterials. Nature Photon 2007;1:224–7.CrossrefGoogle Scholar

[33]

Jiang WX, Chin JY, Cui TJ. Anisotropic metamaterial devices. Materials Today 2009;12:26–33.CrossrefGoogle Scholar

[34]

Gabrielli LH, Cardenas J, Poitras CB, Lipson M. Silicon nanostructure cloak operating at optical frequencies. Nature Photon 2009;3:461–3.CrossrefGoogle Scholar

[35]

Valentine J, Li J, Zentgraf T, Bartal G, Zhang X. An optical cloak made of dielectrics. Nature Mater 2009;8:568–71.CrossrefGoogle Scholar

[36]

Kanté B, Germain D, de Lustrac A. Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies. Phys Rev B 2009;80:201104.CrossrefGoogle Scholar

[37]

Semouchkina E, Werner DH, Semouchkin GB, Pantano C. An infrared invisibility cloak composed of glass. Appl Phys Lett 2010;96:233503.CrossrefGoogle Scholar

[38]

Zhai YB, Ping XW, Jiang WX, Cui TJ. Finite-element analysis of three-dimensional axisymmetrical invisibility cloaks and other metamaterial devices. Commun Comput Phys 2010;8:823–34.Google Scholar

[39]

Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M. Three-dimensional invisibility cloak at optical wavelengths. Science 2010;328:337–9.CrossrefGoogle Scholar

[40]

Wu K, Cheng Q, Wang GP. Fourier optics theory for invisibility cloaks. J Opt Soc Am B 2011;28:1467–74.CrossrefGoogle Scholar

[41]

Ergin T, Fischer J, Wegener M. Optical phase cloaking of 700 nm light waves in the far field by a threedimensional carpet cloak. Phys Rev Lett 2011;107:173901.CrossrefGoogle Scholar

[42]

Perczel J, Tyc T, Leonhardt U. Invisibility cloaking without superluminal propagation. New J Phys 2011;13:083007.CrossrefGoogle Scholar

[43]

Gharghi M, Gladden C, Zentgraf T, Liu Y, Yin, X, Valentine J, Zhang X. A carpet cloak for visible light. Nano Lett 2011;11:2825–8.CrossrefGoogle Scholar

[44]

Zhang J, Liu L, Luo Y, Zhang S, Mortensen NA. Homogeneous optical cloak constructed with uniform layered structures. Opt Express 2011;19:8625–31.CrossrefGoogle Scholar

[45]

Ma YG, Ong CK, Tyc T, Leonhardt U. An omnidirectional retroreflector based on the transmutation of dielectric singularities. Nature Materials 2009;8:639–42.CrossrefGoogle Scholar

[46]

Kundtz N, Smith DR. Extreme-angle broadband metamaterial lens. Nature Materials 2010;9:129–32.CrossrefGoogle Scholar

[47]

Turpin JP, Massoud AT, Jiang ZH, Werner PL, Werner DH. Conformal mappings to achieve simple material parameters for transformation optics devices. Opt Express 2010;18:244–52.CrossrefGoogle Scholar

[48]

Zentgraf T, Liu Y, Mikkelsen MH, Valentine J, Zhang X. Plasmonic Luneburg and Eaton lenses. Nature Nanotech 2011;6:151–5.CrossrefGoogle Scholar

[49]

Rahm M, Cummer SA, Schurig D, Pendry JB, Smith DR. Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys Rev Lett 2008;100:063903.CrossrefGoogle Scholar

[50]

Chen H, Chan CT. Electromagnetic wave manipulation by layered systems using the transformation media concept. Phys Rev B 2008;78:054204.CrossrefGoogle Scholar

[51]

Roberts DA, Rahm M, Pendry JB, Smith DR. Transformation-optical design of sharp waveguide bends and corners. Appl Phys Lett 2008;93:251111.CrossrefGoogle Scholar

[52]

Rahm M, Roberts DA, Pendry JB, Smith DR. Transformation-optical design of adaptive beam bends and beam expanders. Opt Express 2008;16:11555–67.CrossrefGoogle Scholar

[53]

Landy NI, Padilla WJ. Guiding light with conformal transformations. Opt Express 2009;17:14872–9.CrossrefGoogle Scholar

[54]

Vasic B, Gajic R, Isic G, Hingerl K. Confined metamaterial structures based on coordinate transformations. Acta Phys Polonica A 2009;116:96.Google Scholar

[55]

Greenleaf A, Kurylev Y, Lassas M, Uhlmann G. Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys Rev Lett 2007;99:183901.CrossrefGoogle Scholar

[56]

Kadic M, Dupont G, Guenneau S, Enoch S. Plasmonic wormholes: defeating the early bird. arXiv:1102.2372v1, 2011.Google Scholar

[57]

Chen H, Chan CT, Liu S, Lin Z. A simple route to a tunable electromagnetic gateway. New J Phys 2009;11:083012.CrossrefGoogle Scholar

[58]

Luo X, Yang T, Gu Y, Chen H, Ma H. Conceal an entrance by means of superscatterer. Appl Phys Lett 2009;94:223513.CrossrefGoogle Scholar

[59]

Leonhardt U, Piwnicki P. Optics of nonuniformly moving media. Phys Rev A 1999;60:4301–12.CrossrefGoogle Scholar

[60]

Rahm M, Schurig D, Roberts DA, Cummer SA, Smith DR, Pendry JB. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwells equations. Photonics Nanostruct Fundam Appl 2008;6:87–95.CrossrefGoogle Scholar

[61]

Genov DA, Zhang S, Zhang X. Mimicking celestial mechanics in metamaterials. Nature Phys 2009;5:687–692.CrossrefGoogle Scholar

[62]

Narimanov EE, Kildishev AV. Optical black hole: broadband omnidirectional light absorber. Appl Phys Lett 2009;95:041106.CrossrefGoogle Scholar

[63]

Argyropoulos C, Kallos E, Hao Y. FDTD analysis of the optical black hole. J Opt Soc Am B 2010;27:2020–25.CrossrefGoogle Scholar

[64]

Chen H, Miao R-X, Li M. Transformation optics that mimics the system outside a Schwarzschild black hole. Opt Express 2010;18:15183–8.CrossrefGoogle Scholar

[65]

Cheng Q, Cui, TJ, Jiang WX, Cai BG. An omnidirectional electromagnetic absorber made of metamaterials. New J Phys 2010;12:063006.CrossrefGoogle Scholar

[66]

Kadic M, Dupont G, Chang T-M, Guenneau S, Enoch S. Curved trajectories on transformed metal surfaces: beam-splitter, invisibility carpet and black hole for surface plasmon polaritons. Photonics Nanostruct Fundam Appl 2011;9:302–7.Google Scholar

[67]

Lai Y, Ng J, Chen HY, Han DZ, Xiao JJ, Zhang Z-Q, Chan CT. Illusion optics: the optical transformation of an object into another object. Phys Rev Lett 2009;102:253902.CrossrefGoogle Scholar

[68]

Zolla F, Guenneau S, Nicolet A, Pendry JB. Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect. Opt Lett 2007;32:1069–71.CrossrefGoogle Scholar

[69]

Diatta A, Guenneau S. Non singular cloaks allow mimesis. J Optic 2011;13:24012.CrossrefGoogle Scholar

[70]

Nicolet A, Zolla F, Geuzaine C. Generalised cloaking and optical polyjuice. arXiv:0909.0848v1, 2009.Google Scholar

[71]

Salandrino A, Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys Rev B 2006;74:075103.CrossrefGoogle Scholar

[72]

Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 2007;315:1686.CrossrefGoogle Scholar

[73]

Smolyaninov II, Hung Y-J, Davis CC. Magnifying superlens in the visible frequency range. Science 2007;315:1699–701.CrossrefGoogle Scholar

[74]

Kildishev AV, Narimanov EE. Impedancematched hyperlens. Opt Lett 2007;32:3432–4.CrossrefGoogle Scholar

[75]

Kildishev AV, Shalaev VM. Engineering space for light via transformation optics. Opt Lett 2008;33:43–5.CrossrefGoogle Scholar

[76]

Engheta N, Ziolkowski RW. Metamaterials: physics and engineering explorations. Wiley-IEEE Press; 2006.Google Scholar

[77]

Ramakrishna SA. Physics of negative refractive index materials. Rep Prog Phys 2005;68:449.CrossrefGoogle Scholar

[78]

Ramakrishna SA, Grzegorczyk TM. Physics and applications of negative refractive index materials. CRC Press; 2008.Google Scholar

[79]

Maier SA. Plasmonics: fundamentals and applications. Springer Verlag; 2007.Google Scholar

[80]

Alu A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 2005;72:016623.CrossrefGoogle Scholar

[81]

Nicorovici NA, Milton GW, McPhedran RC, Botten LC. Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance. Opt Express 2007;15:6314–23.CrossrefGoogle Scholar

[82]

Kadic M, Guenneau S, Enoch S. Transformational plasmonics: cloak, concentrator and rotator for SPPs. Opt Express 2010;18:12027–32.CrossrefGoogle Scholar

[83]

Huidobro PA, Nesterov ML, Martín-Moreno L, García-Vidal FJ. Transformation optics for plasmonics. Nano Lett 2010;10:1985–90.CrossrefGoogle Scholar

[84]

Liu Y, Zentgraf T, Bartal G, Zhang X. Transformational plasmon optics. Nano Lett 2010;10:1991–7.CrossrefGoogle Scholar

[85]

Renger J, Kadic M, Dupont G, Aćimović SS, Guenneau S, Quidant R, Enoch S. Hidden progress: broadband plasmonic invisibility. Opt Express 2010;18:15757–68.CrossrefGoogle Scholar

[86]

Huidobro PA, Nesterov ML, Martín-Moreno L, García-Vidal FJ. Moulding the flow of surface plasmons using conformal and quasiconformal mappings. New J Phys 2011;13:033011.CrossrefGoogle Scholar

[87]

Kadic M, Dupont G, Guenneau S, Enoch S. Controlling surface plasmon polaritons in transformed coordinates. J Mod Opt 2011;58:994–1003.CrossrefGoogle Scholar

[88]

Kadic M, Guenneau S, Enoch S, Ramakrishna SA. Plasmonic space folding: focusing surface plasmons via negative refraction in complementary media. ACS Nano 2011;5:6819–25.CrossrefGoogle Scholar

[89]

Vakil A, Engheta N. Transformation optics using graphene. Science 2011;332:1291–4.CrossrefGoogle Scholar

[90]

Aubry A, Lei DY, Fernández-Domínguez AI, Sonnefraud Y, Maier SA, Pendry JB. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett 2010;10:2574–9.CrossrefGoogle Scholar

[91]

Aubry A, Lei DY, Maier SA, Pendry JB. Conformal transformation applied to plasmonics beyond the quasistatic limit. Phys Rev B 2010;82:205109.CrossrefGoogle Scholar

[92]

Fernández-Domínguez AI, Maier SA, Pendry JB. Collection and concentration of light by touching spheres: a transformation optics approach. Phys Rev Lett 2010;105:266807.CrossrefGoogle Scholar

[93]

Aubry A, Lei DY, Maier SA, Pendry JB. Interaction between plasmonic nanoparticles revisited with transformation optics. Phys Rev Lett 2010;105:233901.CrossrefGoogle Scholar

[94]

Aubry A, Lei DY, Maier SA, Pendry JB. Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach. ACS Nano 2011;5:3293–308.CrossrefGoogle Scholar

[95]

Fernández-Domínguez AI, Wiener A, García- Vidal FJ, Maier SA, Pendry JB. Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys Rev Lett 2012;108:106802.CrossrefGoogle Scholar

[96]

Nicolet A, Remacle J-F, Meys B, Genon A, Legros W. Transformation methods in computational electromagnetism. J Appl Phys 1994;75:6036–8.CrossrefGoogle Scholar

[97]

Berenger JP. A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 1994;114:185–200.CrossrefGoogle Scholar

[98]

Ward AJ, Pendry JB. Refraction and geometry in maxwell’s equations. J Mod Opt 1996;43:773–93.CrossrefGoogle Scholar

[99]

Zolla F, Renversez G, Nicolet A, Kuhlmey B, Guenneau S, Felbacq D. Foundations of photonic crystal fibres. Imperial College Press; 2005.Google Scholar

[100]

Greenleaf A, Lassas M, Uhlmann G. Anisotropic conductivities that cannot detected in EIT. Physiol Meas 2003;24:413–20.CrossrefGoogle Scholar

[101]

COMSOL. Multiphysics 3.5a. http://www.comsol.com.

[102]

Lezec HJ, Dionne JA, Atwater HA. Negative refraction at visible frequencies. Science 2007;316:430–2.CrossrefGoogle Scholar

[103]

Novotny L, Hecht B. Principles of nano-optics. Cambridge University Press; 2006.Google Scholar

[104]

Hecht B, Bielefeldt H, Inouye Y, Pohl DW, Novotny L. Facts and artifacts in near-field optical microscopy. J Appl Phys 1997;81:2492–8.CrossrefGoogle Scholar

[105]

Vogelgesang R, Dmitriev A. Real-space imaging of nanoplasmonic resonances. Analyst 2010;135:1175–81.CrossrefGoogle Scholar

[106]

Bouhelier A, Huser Th, Tamaru H, Güntherodt H-J, Pohl DW, Baida FI, Van Labeke D. Plasmon optics of structured silver films. Phys Rev B 2001;63:155404–1–9.CrossrefGoogle Scholar

[107]

Drezet A, Hohenau A, Koller D, Stepanov A, Ditlbacher H, Steinberger B, Aussenegg FR, Leitner A, Krenn JR. Leakage radiation microscopy of surface plasmon polaritons. Mater Sci Eng B 2008;149:220.CrossrefGoogle Scholar

[108]

Hohenau A, Krenn JR, Drezet A, Mollet O, Huant S, Genet C, Stein B, Ebbesen TW. Surface plasmon leakage radiation microscopy at the diffraction limit. Opt Express 2011;19:25749–62.CrossrefGoogle Scholar

[109]

Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR. Two-dimensional optics with surface plasmon polaritons. Appl Phys Lett 2002;81:1762–4.CrossrefGoogle Scholar

[110]

Randhawa S, González MU, Renger J, Enoch S, Quidant R. Design and properties of dielectric surface plasmon bragg mirrors. Opt Express 2010;18:14496–510.CrossrefGoogle Scholar

[111]

Pacifici D, Lezec HJ, Atwater HA. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon 2007;1:402–6.CrossrefGoogle Scholar

[112]

Krasavin AV, Randhawa S, Bouillard J-S, Renger J, Quidant R, Zayats AV. Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry. Opt Express 2011;19:25222–9.CrossrefGoogle Scholar

[113]

Berini P, De Leon I. Surface plasmonpolariton amplifiers and lasers. Nature Photon 2012;6:16–24.Google Scholar

[114]

Seidel J, Grafström S, Eng L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys Rev Lett 2005;94:177401–1–4.CrossrefGoogle Scholar

[115]

Krasavin AV, Vo TP, Dickson W, Bolger PM, Zayats AV. All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain. Nano Lett 2011;11:2231–5.CrossrefGoogle Scholar

## Comments (0)