Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 1, Issue 3-4


Nanoplasmonic sensing for nanomaterials science

Elin M. Larsson
  • Department of Applied Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
  • Competence Center for Catalysis, Chalmers University of Technology, S-412 96 Göteborg, Sweden
  • Insplorion AB, Stena Center 1C, S-412 92 Göteborg, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Svetlana Syrenova / Christoph Langhammer
Published Online: 2012-12-06 | DOI: https://doi.org/10.1515/nanoph-2012-0029


Nanoplasmonic sensing has over the last two decades emerged as and diversified into a very promising experimental platform technology for studies of biomolecular interactions and for biomolecule detection (biosensors). Inspired by this success, in more recent years, nanoplasmonic sensing strategies have been adapted and tailored successfully for probing functional nanomaterials and catalysts in situ and in real time. An increasing number of these studies focus on using the localized surface plasmon resonance (LSPR) as an experimental tool to study a process of interest in a nanomaterial, with a materials science focus. The key assets of nanoplasmonic sensing in this area are its remote readout, non-invasive nature, single particle experiment capability, ease of use and, maybe most importantly, unmatched flexibility in terms of compatibility with all material types (particles and thin/thick layers, conductive or insulating) are identified. In a direct nanoplasmonic sensing experiment the plasmonic nanoparticles are active and simultaneously constitute the sensor and the studied nano-entity. In an indirect nanoplasmonic sensing experiment the plasmonic nanoparticles are inert and adjacent to the material of interest to probe a process occurring in/on this material. In this review we define and discuss these two generic experimental strategies and summarize the growing applications of nanoplasmonic sensors as experimental tools to address materials science-related questions.

Keywords: direct nanoplasmonic sensing; in situ spectroscopy; indirect nanoplasmonic sensing; materials science; nanoplasmonic spectroscopy

About the article

Corresponding author Edited by Harald Giessen, University of Stuttgart, Stuttgart, Germany

Received: 2012-09-25

Accepted: 2012-11-08

Published Online: 2012-12-06

Published in Print: 2012-12-01

Citation Information: Nanophotonics, Volume 1, Issue 3-4, Pages 249–266, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2012-0029.

Export Citation

©2012 by Science Wise Publishing & De Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Joshua A. Jackman, Abdul Rahim Ferhan, and Nam-Joon Cho
Bulletin of the Chemical Society of Japan, 2019, Volume 92, Number 8, Page 1404
Markus Schwind, Saman Hosseinpour, Christoph Langhammer, Igor Zorić, Christofer Leygraf, and Bengt Kasemo
Journal of The Electrochemical Society, 2013, Volume 160, Number 10, Page C487
Su Liu, Arturo Susarrey Arce, Sara Nilsson, David Albinsson, Lars Hellberg, Svetlana Alekseeva, and Christoph Langhammer
ACS Nano, 2019, Volume 13, Number 5, Page 6090
Sarah J. Routledge, John A. Linney, and Alan D. Goddard
Biochemical Society Transactions, 2019, Volume 47, Number 3, Page 919
Svetlana Alekseeva, Ievgen I. Nedrygailov, and Christoph Langhammer
ACS Photonics, 2019, Volume 6, Number 6, Page 1319
J.A. Dionne, A. Baldi, B. Baum, C.-S. Ho, V. Janković, G.V. Naik, T. Narayan, J.A. Scholl, and Y. Zhao
MRS Bulletin, 2015, Volume 40, Number 12, Page 1138
Abdul Rahim Ferhan, Barbora Špačková, Joshua A. Jackman, Gamaliel Junren Ma, Tun Naw Sut, Jiri Homola, and Nam-Joon Cho
Analytical Chemistry, 2018
Wen Chen, Filip Duša, Joanna Witos, Suvi-Katriina Ruokonen, and Susanne K. Wiedmer
Scientific Reports, 2018, Volume 8, Number 1
Martin Mesch, Thomas Weiss, Martin Schäferling, Mario Hentschel, Ravi S. Hegde, and Harald Giessen
ACS Sensors, 2018
Nikolay N. Durmanov, Rustam R. Guliev, Arkady V. Eremenko, Irina A. Boginskaya, Ilya A. Ryzhikov, Ekaterina A. Trifonova, Egor V. Putlyaev, Aleksei N. Mukhin, Sergey L. Kalnov, Marina V. Balandina, Artem P. Tkachuk, Vladimir A. Guschin, Andrey K. Sarychev, Andrey N. Lagarkov, Ilya A. Rodionov, Aidar R. Gabidullin, and Ilya N. Kurochkin
Sensors and Actuators B: Chemical, 2017
Giacomo Russo, Joanna Witos, Antti H. Rantamäki, and Susanne K. Wiedmer
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2017, Volume 1859, Number 12, Page 2361
B N Tugchin, N Janunts, M Steinert, K Dietrich, E B Kley, A Tünnermann, and T Pertsch
New Journal of Physics, 2017, Volume 19, Number 6, Page 063024
Pedro J. Rivero, Elia Ibañez, Javier Goicoechea, Aitor Urrutia, Ignacio R. Matias, and Francisco J. Arregui
Sensors and Actuators B: Chemical, 2017, Volume 251, Page 624
Joshua A. Jackman, Abdul Rahim Ferhan, and Nam-Joon Cho
Chem. Soc. Rev., 2017, Volume 46, Number 12, Page 3615
Ferry A. A. Nugroho, Amaia Diaz de Zerio Mendaza, Camilla Lindqvist, Tomasz J. Antosiewicz, Christian Müller, and Christoph Langhammer
Analytical Chemistry, 2017, Volume 89, Number 4, Page 2575
Joanna Witos, Giacomo Russo, Suvi-Katriina Ruokonen, and Susanne K. Wiedmer
Langmuir, 2017, Volume 33, Number 4, Page 1066
Ferry Anggoro Ardy Nugroho, Rickard Frost, Tomasz J. Antosiewicz, Joachim Fritzsche, Elin M. Larsson Langhammer, and Christoph Langhammer
ACS Sensors, 2017, Volume 2, Number 1, Page 119
Joachim Fritzsche, David Albinsson, Michael Fritzsche, Tomasz J. Antosiewicz, Fredrik Westerlund, and Christoph Langhammer
Nano Letters, 2016, Volume 16, Number 12, Page 7857
F. J. Timmermans, A. T. M. Lenferink, H. A. G. M. van Wolferen, and C. Otto
The Analyst, 2016, Volume 141, Number 23, Page 6455
Pooya Tabib Zadeh Adibi, Torben Pingel, Eva Olsson, Henrik Grönbeck, and Christoph Langhammer
ACS Nano, 2016, Volume 10, Number 5, Page 5063
Zhaoke Zheng and Tetsuro Majima
Angewandte Chemie, 2016, Volume 128, Number 8, Page 2929
Zhaoke Zheng and Tetsuro Majima
Angewandte Chemie International Edition, 2016, Volume 55, Number 8, Page 2879
Victor J. Cadarso, Andreu Llobera, Mar Puyol, and Helmut Schift
ACS Nano, 2016, Volume 10, Number 1, Page 778
A. Berger, R. Alcaraz de la Osa, A. K. Suszka, M. Pancaldi, J. M. Saiz, F. Moreno, H. P. Oepen, and P. Vavassori
Physical Review Letters, 2015, Volume 115, Number 18
Carl Wadell and Christoph Langhammer
Nanoscale, 2015, Volume 7, Number 25, Page 10963
Martin Mesch, Chunjie Zhang, Paul V. Braun, and Harald Giessen
ACS Photonics, 2015, Volume 2, Number 4, Page 475
Nicolò Maccaferri, Keith E. Gregorczyk, Thales V. A. G. de Oliveira, Mikko Kataja, Sebastiaan van Dijken, Zhaleh Pirzadeh, Alexandre Dmitriev, Johan Åkerman, Mato Knez, and Paolo Vavassori
Nature Communications, 2015, Volume 6, Page 6150
Kristina Wettergren, Anders Hellman, Filippo Cavalca, Vladimir P. Zhdanov, and Christoph Langhammer
Nano Letters, 2015, Volume 15, Number 1, Page 574
Pooya Tabib Zadeh Adibi, Francesco Mazzotta, Tomasz J. Antosiewicz, Magnus Skoglundh, Henrik Grönbeck, and Christoph Langhammer
ACS Catalysis, 2015, Volume 5, Number 1, Page 426
Nicholas Karker, Gnanaprakash Dharmalingam, and Michael A. Carpenter
ACS Nano, 2014, Volume 8, Number 10, Page 10953
Weisheng Yue, Zhihong Wang, Yang Yang, Jingqi Li, Ying Wu, Longqing Chen, Boon Ooi, Xianbin Wang, and Xi-xiang Zhang
Nanoscale, 2014, Volume 6, Number 14, Page 7917
Mudassar Virk, Kunli Xiong, Mikael Svedendahl, Mikael Käll, and Andreas B. Dahlin
Nano Letters, 2014, Volume 14, Number 6, Page 3544
Andreas B. Dahlin, Mokhtar Mapar, Kunli Xiong, Francesco Mazzotta, Fredrik Höök, and Takumi Sannomiya
Advanced Optical Materials, 2014, Volume 2, Number 6, Page 556
Svetlana Syrenova, Carl Wadell, and Christoph Langhammer
Nano Letters, 2014, Volume 14, Number 5, Page 2655
Tina A. Gschneidtner, Yuri A. Diaz Fernandez, Svetlana Syrenova, Fredrik Westerlund, Christoph Langhammer, and Kasper Moth-Poulsen
Langmuir, 2014, Volume 30, Number 11, Page 3041
Yuri Diaz Fernandez, Lanlan Sun, Tina Gschneidtner, and Kasper Moth-Poulsen
APL Materials, 2014, Volume 2, Number 1, Page 010702
Viktoria Gusak, Leo-Philipp Heiniger, Vladimir P. Zhdanov, Michael Grätzel, Bengt Kasemo, and Christoph Langhammer
Energy & Environmental Science, 2013, Volume 6, Number 12, Page 3627
Mathias Müller, Ulrich Jung, Viktoria Gusak, Sandra Ulrich, Michelle Holz, Rainer Herges, Christoph Langhammer, and Olaf Magnussen
Langmuir, 2013, Volume 29, Number 34, Page 10693
Nicholas A. Joy, Brian K. Janiszewski, Steven Novak, Timothy W. Johnson, Sang-Hyun Oh, Ananthan Raghunathan, John Hartley, and Michael A. Carpenter
The Journal of Physical Chemistry C, 2013, Volume 117, Number 22, Page 11718
Nikolai Strohfeldt, Andreas Tittl, and Harald Giessen
Optical Materials Express, 2013, Volume 3, Number 2, Page 194

Comments (0)

Please log in or register to comment.
Log in