[1]
Irvine-Halliday D, Peon R, Doluweera G, Platonova A, Irvine-Halliday G. Solid-state lighting: the only solution for the developing world. SPIE Newsroom 2006. CrossrefGoogle Scholar
[2]
US Environmental Protection Agency Energy Star. Saving energy by proxy. Off the Charts 2006:5–7. Google Scholar
[3]
Peon R, Leon S, Irvine-Halliday D. Solid state lighting for the developing world: the only solution. Fifth International Conference on Solid State Lighting 2005;5941:59410N–15. Google Scholar
[4]
U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications, 2011. Google Scholar
[5]
Graydon O. The new oil? Nat Photonics 2011;5:1. Google Scholar
[6]
Erdem T, Demir HV. Semiconductor nanocrystals as rare-earth alternatives. Nat Photonics 2011;5:126. CrossrefGoogle Scholar
[7]
Erdem T, Nizamoglu S, Sun XW, Demir HV. A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores. Opt Express 2010;18:340–7. CrossrefGoogle Scholar
[8]
Zhong P, He G, Zhang M. Optimal spectra of white light-emitting diodes using quantum dot nanophosphors. Opt Express 2012;20:9122–34. CrossrefGoogle Scholar
[9]
Jang E, Jun S, Jang H, Lim J, Kim B, Kim Y. White-light-emitting diodes with quantum dot color converters for display backlights. Adv Mater 2010;22:3076–80. CrossrefGoogle Scholar
[10]
Erdem T, Nizamoglu S, Demir HV. Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes. Opt Express 2012;20:3275–95. CrossrefGoogle Scholar
[11]
Rogach AL, Gaponik N, Lupton JM, Bertoni C, Gallardo DE, Dunn S, Pira NL, Paderi M, Repetto P, Romanov SG, O’Dwyer C, Sotomayor Torres CM, Eychmüller A. Light-emitting diodes with semiconductor nanocrystals. Angew Chem Int Ed 2008;47:6538–49. CrossrefGoogle Scholar
[12]
Wood V, Bulović V. Colloidal quantum dot light-emitting devices. Nano Rev 2010;1:5202. Google Scholar
[13]
Wyszecki G, Stiles WS. Color science: concepts and methods, quantitative data and formulae. NY: Wiley-Interscience; 2000. Google Scholar
[14]
Webvision, The Organization of the Retina and Visual System, (Accessed Sep 5, 2012, at http://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/) Google Scholar
[15]
Stell WK. The morphological organization of the vertebrate retina. Physiology of photoreceptor organs (A 73-23301 09-04). Berlin: Springer-Verlag; 1972:111–213. Google Scholar
[16]
Schubert EF. Light-emitting diodes. New York: Cambridge University Press; 2006. Google Scholar
[17]
CIE Commission Internationale de l’Éclairage Proceedings, 1931. Cambridge: Cambridge University Press; 1932. Google Scholar
[18]
Brown TG, Creath K, Kogelnik H, Kriss M, Schmitt J, Weber MJ. The optics encyclopedia: basic foundations and practical applications. Berlin: Wiley-VCH; 2004. Google Scholar
[19]
CIE Commission Internationale de l’Éclairage Proceedings, Colorimetry. CIE 15.2;1986. Google Scholar
[20]
Raynham P, Saksvrikrønning T. White light and facial recognition. The Lighting J 2003;68:29–33. Google Scholar
[21]
Davis W, Ohno Y. Color quality scale. Opt Eng 2010;49:033602. CrossrefGoogle Scholar
[22]
Thornton WA. Color-discrimination index. J Opt Soc Am 1972;62:191–4. CrossrefGoogle Scholar
[23]
Fotios SA. The perception of light sources of different color properties. PhD Thesis, University of Manchester, Institute of Science and Technology, UK; 1997. Google Scholar
[24]
Xu H. Color-rendering capacity of illumination. J Opt Soc Am 1983;73:1709–13. CrossrefGoogle Scholar
[25]
Hashimoto K, Nayatani Y. Visual clarity and feeling of contrast. Color Res Appl 1994;19:171–85. CrossrefGoogle Scholar
[26]
Judd DB. A flattery index for artificial illuminants. Illum Eng 1967;62:593–8. Google Scholar
[27]
CIE Commission Internationale de l’Éclairage Proceedings, Colorimetry. CIE 15; 1971. Google Scholar
[28]
CIE Commission Internationale de l’Éclairage Proceedings. Method of measuring and specifying color-rendering of light sources. CIE 13.3; 1995. Google Scholar
[29]
Li C, Luo MR, Rigg B, Hunt RWG. CMC 2000 chromatic adaptation transform: CMCCAT2000. Color Res Appl 2002;27:49–58. Google Scholar
[30]
Light Quality, Energy Star. (Accessed Sep 5, 2012 at http://www.energystar.gov/ia/products/lighting/fixtures/fixture_guide//person_colortemp.jpg).
[31]
CIE Proceedings, 1951. Google Scholar
[32]
OSRAM Sylvania Corporation Technical Report, Lumens and mesopic vision, 2000.Google Scholar
[33]
Johnson LB. Upper limit of mesopic vision. Trans Illum Eng Soc 1937;32:646–50. Google Scholar
[34]
LeGrand Y. Handbook of sensory physiology, Vol. VII/4: Visual psychophysics. In: Jameson D, Hurvich L, editors. Berlin: Springer Verlag, 1972. Google Scholar
[35]
Kokoschka S. Das V(λ)-Dilemma in der Photometrie. Proceedings of 3. Internationales Forum für den lichttechnischen Nachwuchs, Technische Universität Illmenau, 1997. Google Scholar
[36]
Illumination Engineering Society of America. IESNA lighting handbook. Illuminating Engineering, 2000. Google Scholar
[37]
CIE Commission Internationale de l’Éclairage. Proceedings, Light as a true visual quantity: Principles of measurement. CIE 041, 1978. Google Scholar
[38]
Rea MS, Bullough JD, Freyssinier-Nova JP, Bierman A. A proposed unified system of photometry. Lighting Res Technol 2004;36:85–109.CrossrefGoogle Scholar
[39]
Eloholma M, Viikari M, Halonen L, Walkey H, Goodman T, Alferdinck J, Freiding A, Bodrogi P, Várady G. Mesopic models – from brightness matching to visual performance in night-time driving: a review. Lighting Res Technol 2005;37:155–73. CrossrefGoogle Scholar
[40]
Goodman T, Forbes A, Walkey H, Eloholma M, Halonen L, Alferdinck J, Freiding A, Bodrogi P, Várady G, Szalmas A. Mesopic visual efficiency IV: A model with relevance to nighttime driving and other applications. Lighting Res Technol 2007;39:365–92. CrossrefGoogle Scholar
[41]
CIE Commission Internationale de l’Éclairage. Technical Report 191: 2010 – Recommended system for mesopic photometry based on visual performance, 2010. Google Scholar
[42]
Rea MS, Figueiro MG, Bierman A, Bullough JD. Circadian light. J Circadian Rhythms 2010;8:2. Available at: http://www.jcircadianrhythms.com/content/pdf/1740-3391-8-2.pdf. Google Scholar
[43]
Gall D. Die Messung circadianer Strahlungsgrößen. Proceedings of 3. Internationales Forum fur den lichttechnischen Nachswuchs, Technische Universität Illmenau, 2004. Google Scholar
[44]
Rea MS, Figueiro MG, Bierman A, Hamner R. Modeling the spectral sensitivity of the human circadian system. Lighting Res Technol 2011;43:1–12. Google Scholar
[45]
Figueiro MG, Rea MS. Lack of short-wavelength light during the school day delays dim light melatonin onset (DLMO) in middle school students. Neuro Endocrinol Lett 2010;31:92–6. Google Scholar
[46]
Berman SM. Energy efficiency consequences of scotopic sensitivity. J Illumin Eng Soc 1992;21:3–14. Google Scholar
[47]
Berman SM, Navvab M, Martin MJ, Sheedy J, Tithof W. A comparison of traditional and high colour temperature lighting on the near acuity of elementary school children. Lighting Res Technol 2006;38:41–9. CrossrefGoogle Scholar
[48]
Koole R. Fundamentals and applications of semiconductor nanocrystals: a study on the synthesis, optical properties, and interactions of quantum dots. PhD Thesis, Netherlands: Utrecht University; 2008. Google Scholar
[49]
Bera D, Qian L, Holloway PH. Semiconducting quantum dots for bioimaging. In: Pathak Y, Thassu D, editors. Drug delivery nanoparticles formulation and characterization. London, UK: Informa Healthcare; 2009:349–66. Google Scholar
[50]
Gaponik N, Hickey SG, Dorfs D, Rogach AL, Eychmüller A. Progress in the light emission of colloidal semiconductor nanocrystals. Small 2010;6:1364–78. CrossrefGoogle Scholar
[51]
Greytak AB, Allen PM, Liu W, Zhao J, Young ER, Popović Z, Walker BJ, Nocera DG, Bawendi MG. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chem Sci 2012;3:2028–34. CrossrefGoogle Scholar
[52]
Jain PK, Beberwyck BJ, Fong L-K, Polking MJ, Alivisatos AP. Highly luminescent nanocrystals from removal of impurity atoms residual from ion-exchange synthesis. Angew Chem Int Ed 2012;51:2387–90. CrossrefGoogle Scholar
[53]
Reiss P, Protière M, Li L. Core/shell semiconductor nanocrystals. Small 2009;5:154–68. CrossrefGoogle Scholar
[54]
Wang X, Yan X, Li W, Sun K. Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors. Adv Mater 2012;24:2742–7. CrossrefGoogle Scholar
[55]
Demir HV, Nizamoglu S, Erdem T, Mutlugun E, Gaponik N, Eychmüller A. Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today 2011;6:632–47. CrossrefGoogle Scholar
[56]
American National Standard for Electric Lamps – Specifications for the Chromaticity of Solid State Lighting (SSL) Products, 2008. Google Scholar
[57]
Erdem T, Demir HV. Efficient LED road lighting with high color rendering using quantum dot nanophosphors (submitted). Google Scholar
[58]
British Standard BS 5489-1:2003 – Code of practice for the design of road lighting, 2003. Google Scholar
[59]
IESNA Illuminating Engineering Society of North America, Recommended Practice RP-8-00 Roadway lighting, 2005. Google Scholar
[60]
Achermann M, Petruska MA, Koleske DD, Crawford MH, Klimov VI. Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. Nano Lett 2006;6:1396–00. CrossrefGoogle Scholar
[61]
Chen H-S, Hsu C-K, Hong H-Y. InGaN-CdSe-ZnSe quantum dots white LEDs. IEEE Photonic Tech L 2006;18:193–5.CrossrefGoogle Scholar
[62]
Chen H-S, Yeh D-M, Lu C-F, Huang C-F, Shiao W-Y, Huang J-J, Yang CC, Liu I-S, Su W-F. White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/Green two-wavelength light-emitting diode. IEEE Photonic Tech L 2006;18:1430–2.CrossrefGoogle Scholar
[63]
Nizamoglu S, Ozel T, Sari E, Demir HV. White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology 2007;18:065709. CrossrefGoogle Scholar
[64]
Nizamoglu S, Zengin G, Demir HV. Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index. Appl Phys Lett 2008;92:031102–031102–3. CrossrefGoogle Scholar
[65]
Nizamoglu S, Erdem T, Sun XW, Demir HV. Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering. Opt Lett 2010;35:3372–4. CrossrefGoogle Scholar
[66]
Nizamoglu S, Erdem T, Demir HV. High scotopic/photopic ratio white-light-emitting diodes integrated with semiconductor nanophosphors of colloidal quantum dots. Opt Lett 2011;36:1893–5. CrossrefGoogle Scholar
[67]
Nizamoglu S, Mutlugun E, Özel T, Demir HV, Sapra S, Gaponik N, Eychmüller A. Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation. Appl Phys Lett 2008;92:113110. CrossrefGoogle Scholar
[68]
Wang X, Li W, Sun K. Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties. J Mater Chem 2011;21:8558. CrossrefGoogle Scholar
[69]
Song W-S, Yang H. Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots. Chem Mater 2012;24:1961–7. CrossrefGoogle Scholar
[70]
Song W-S, Yang H. Fabrication of white light-emitting diodes based on solvothermally synthesized copper indium sulfide quantum dots as color converters. Appl Phys Lett 2012;100:183104. CrossrefGoogle Scholar
[71]
Mutlugun E, Hernandez-Martinez PL, Eroglu C, Coskun Y, Erdem T, Sharma VK, Unal E, Panda SK, Hickey SG, Gaponik N, Eychmüller A, Demir HV. Large-area (over 50 cm×50 cm) Freestanding films of colloidal InP/ZnS quantum dots. Nano Lett 2012;12:3986–93. CrossrefGoogle Scholar
[72]
Kim S, Kim T, Kang M, Kwak SK, Yoo TW, Park LS, Yang I, Hwang S, Lee JE, Kim S-K, Kim S-W. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J Am Chem Soc 2012;134:3804–9. CrossrefGoogle Scholar
[73]
Woo JY, Kim K, Jeong S, Han C-S. Enhanced photoluminance of layered quantum dot – phosphor nanocomposites as converting materials for light emitting diodes. J Phys Chem C 2011;115:20945–52. CrossrefGoogle Scholar
[74]
Kundu J, Ghosh Y, Dennis AM, Htoon H, Hollingsworth JA. Giant nanocrystal quantum dots: stable down-conversion phosphors that exploit a large stokes shift and efficient shell-to-core energy relaxation. Nano Lett 2012;12: 3031–7. CrossrefGoogle Scholar
[75]
Nizamoglu S, Mutlugun E, Akyuz O, Kosku Perkgoz N, Demir HV, Liebscher L, Sapra S, Gaponik N, Eychmüller A. White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning. New J Phys 2008;10:023026. CrossrefGoogle Scholar
[76]
Chandramohan S, Ryu BD, Kim HK, Hong C-H, Suh E-K. Trap-state-assisted white light emission from a CdSe nanocrystal integrated hybrid light-emitting diode. Opt Lett 2011;36:802–4. CrossrefGoogle Scholar
[77]
Gosnell JD, Schreuder MA, Rosenthal SJ, Weissa SM. Efficiency improvements of white-light CdSe nanocrystal-based LEDs. Proc SPIE 2007;66690R.Google Scholar
[78]
Nizamoglu S, Demir HV. Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes. Nanotechnology 2007;18:405702.CrossrefGoogle Scholar
[79]
Ziegler J, Xu S, Kucur E, Meister F, Batentschuk M, Gindele F, Nann T. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs. Adv Mater 2008;20:4068–73.CrossrefGoogle Scholar
[80]
Changyu S. CdSe/ZnS/CdS core/shell quantum dots for white LEDs. Proc SPIE 2008;7138:71382E.Google Scholar
[81]
Kim JU, Lee MH, Yang H. Synthesis of Zn(1-x)Cd(x)S:Mn/ZnS quantum dots and their application to light-emitting diodes. Nanotechnology 2008;19:465605.Google Scholar
[82]
Wang H, Lee KS, Ryu JH, Hong CH, Cho YH. White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins. Nanotechnology 2008;19:145202.CrossrefGoogle Scholar
[83]
Jang HS, Heesun Yang H, Kim SW, Han JY, Lee S-G, Jeon DY. White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5: Ce3+, Li+ phosphors. Adv Mater 2008;20:2696–702.CrossrefGoogle Scholar
[84]
Jang HS, Kwon B-H, Yang H, Jeon DY. Bright three-band white light generated from CdSe/ZnSe quantum dot-assisted Sr3SiO5:Ce3+, Li+-based whitelight-emitting diode with high color rendering index. Appl Phys Lett 2009;95:161901.CrossrefGoogle Scholar
[85]
Huang C-Y, Su Y-K, Chuang RW, Chen Y-C, Huang T-S, Wan C-T. Tetrachromatic hybrid white light-emitting diodes and the energy transfer between conjugated polymers and CdSe/ZnS quantum dots. J Electrochem Soc 2009;156:H625–8.CrossrefGoogle Scholar
[86]
Yu HJ, Park K, Chung W, Kim J, Kim SH. White light emission from blue InGaN LED precoated with conjugated copolymer/quantum dots as hybrid phosphor. Synthetic Metals 2009;159:2474–7.CrossrefGoogle Scholar
[87]
Cheng G, Mazzeo M, Rizzo A, Li Y, Duan Y, Gigli G. White light-emitting devices based on the combined emission from red CdSe/ZnS quantum dots, green phosphorescent, and blue fluorescent organic molecules. Appl Phys Lett 2009;94:243506.CrossrefGoogle Scholar
[88]
Song W-S, Kim H-J, Kim Y-S, Yang H. Synthesis of Ba2Si3O8:Eu2+ phosphor for fabrication of white light-Emitting diodes assisted by ZnCdSe/ZnSe quantum dot. J Electrochem Soc 2010;157:J319–23.CrossrefGoogle Scholar
[89]
Woo JY, Kim KN, Jeong S, Han CS. Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED. Nanotechnology 2010;21:495704.CrossrefGoogle Scholar
[90]
Changyu S. White LED based on YAG: Ce, Gd phosphor and CdSe-ZnS core/shell quantum dots. Proc SPIE 2008;7138:71382E.Google Scholar
[91]
Gosnell JD, Rosenthal SJ, Weiss SM. White light emission characteristics of polymer-encapsulated CdSe nanocrystal films. IEEE Photon Technol Lett 2010;22:541–3.CrossrefGoogle Scholar
[92]
Dai J, Ji Y, Xu CX, Sun XW, Leck KS, Ju ZG. White light emission from CdTe quantum dots decorated n-ZnO nanorods/p-GaN light-emitting diodes. Appl Phys Lett 2011;99:063112.CrossrefGoogle Scholar
[93]
Jung H, Chung W, Lee CH, Kim SH. Fabrication of white light-emitting diodes based on UV light-emitting diodes with conjugated polymers-(CdSe/ZnS) quantum dots as hybrid phosphors. J Nanosci Nanotechnol 2012:12:5407–11.CrossrefGoogle Scholar
[94]
Shen C, Chu J, Qian F, Zou X, Zhong C, Li K, Jin S. High color rendering index white LED based on nano-YAG:Ce3+phosphor hybrid with CdSe/CdS/ZnS core/shell/shell quantum dots. J Mod Opt 2012;59:1199–203.CrossrefGoogle Scholar
[95]
Zhu L, Xu L, Wang J, Yang S, Wang C-F, Chen L, Chen S. Macromonomer-induced CdTe quantum dots toward multicolor fluorescent patterns and white LEDs. RSC Advances 2012;2:9005–10.CrossrefGoogle Scholar
[96]
Song W-S, Kim J-H, Lee J-H, Lee H-S, Do YR, Yang H. Synthesis of color-tunable Cu-In-Ga-S solid solution quantum dots with high quantum yields for application to white light-emitting diodes. J Mater Chem 2012;22:21901–8.CrossrefGoogle Scholar
[97]
Wikipedia contributors CIE 1931 color space. Wikipedia, the free encyclopedia, 2012. (Accessed Sep 5, 2012 at http://en.wikipedia.org/w/index.php?title=CIE_1931_color_space&oldid=509071050). Google Scholar
[98]
Kim T-H, Cho K-S, Lee EK, Lee SJ, Chae J, Kim JW, Kim DW, Kwon J-Y, Amaratunga G, Lee SY, Choi BL, Kuk Y, Kim JM, Kim K. Full-colour quantum dot displays fabricated by transfer printing. Nat Photonics 2011;5:176–82. CrossrefGoogle Scholar
[99]
Chen K-J, Chen H-C, Tsai K-A, Lin C-C, Tsai H-H, Chien S-H, Cheng B-S, Hsu Y-J, Shih M-H, Tsai C-H, Shih H-H, Kuo H-C. Resonant-enhanced full-color emission of quantum-dot-based display technology using a pulsed spray method. Adv Funct Mater 2012; 22:5138–43. CrossrefGoogle Scholar
Comments (0)